- 11. LATARJET, R. Compt. rend. Soc. Biol. Paris, 1948, 142, 453.
- 12. NETTLESHIP, A., and HENSHAW, P. S. J. Nat. Cancer Inst., 1943, 4, 309.
- 13. SACHAROW, W. W. Biol. Zentr., 1938, 7, 595.
- 14. STRONG, L. C. Proc. Nat. Acad. Sci., 1945, 31, 290.
- 15. TATUM, E. L. Ann. N. Y. Acad. Sci., 1947, 49, 87.
- 16. VOGT, M. Experientia, 1948, 4, 2.

Arylcycloalkylamines

-10 S BRD

Alfred Burger, C. Robert Walter, Jr., William B. Bennet, and Lennox B. Turnbull

Cobb Chemical Laboratory, University of Virginia, Charlottesville

Sympathomimetic amines in which the basic side chain is part of a saturated ring not condensed with their aro1 mm) by the slow methanol catalyzed reaction of cyclohexanone and phenyldiazomethane in a yield of 43%. The ketone yielded 2-phenylcycloheptylamine by the Leuckart reaction, and 5,5-(2'-phenylhexamethylene) hydantoin by the Bucherer method. In a similar way, 2methylcycloheptanone (2) furnished 2-methylcycloheptylamine, and 5,5-(2'-methylhexamethylene) hydantoin, respectively. 4-Methylcycloheptylamine was prepared from 4-methylcycloheptanone (5).

Structural analogues of Methadon were obtained by subjecting 2,2-diphenylcyclohexanone (4) to the Mannich reaction with secondary amines. The resulting 6-dialkylaminomethyl-2,2-diphenylcyclohexanone derivatives, and the corresponding amino alcohols, are listed in Table 1. 2,2-Diphenyl-6-bromocyclohexanone, obtained from the parent ketone by bromination, has also been converted to 2,2-diphenyl-6-dialkylaminocyclohexanone derivatives.

TABLE 1

The Analysis of Substituted Cycloalkane Derivatives

in a second s which have a second	Mp, °C	Formula	Percentage composition	
			Calculated	Found
2-Phenylcycloheptanone semicarbazone	154 - 156	C ₁₄ H ₁₉ N ₃ O	N, 17.13	17.42
2-Phenylcycloheptylamine • HCl	196.5-197.5	C ₁₈ H ₂₀ CIN	C, 69.16 H, 8.93 N, 6.20	$68.52 \\ 8.95 \\ 6.45$
5,5-(2'-Phenylhexamethylene) hydantoin	204.5-207.5	$C_{15}H_{18}N_2O_2$	C, 69.74 H, 7.02 N, 10.85	69.57 7.00 10.89
2-Methylcycloheptylamine . HCl	225.5–227.5 (dec.)	C ₃ H ₁₈ ClN	C, 58.70 H, 11.08 N, 8.56	$58.63 \\ 10.91 \\ 8.45$
5,5-(2'-Methylhexamethylene)hydantoin	216-218.5	$\mathbf{C_{10}H_{16}N_2O_2}$	C, 61.20 H, 8.22 N, 14.28	$\begin{array}{c} 61.30 \\ 8.74 \\ 14.78 \end{array}$
i-Methylcycloheptylamine • HCl	207-209	$C_{s}H_{1s}CIN$	C, 58.70 H, 11.08 N, 8.56	$59.24 \\ 11.21 \\ 8.27$
2,2-Diphenyl-6-dimethylaminomethylcyclohexanone	106-107	$C_{21}H_{25}NO$	C, 82.04 H, 8.20	$\begin{array}{r} 82.18\\ 8.18\end{array}$
2,2-Diphenyl-6-dimethylaminomethylcyclohexanol	108.5-109.5	$\mathbf{C_{21}H_{27}NO}$	C, 81.51 H, 8.80	81.35 8.80
, 2-Diphenyl-6-morpholinomethylcyclohexanone \cdot HCl	160	$\mathbf{C_{23}H_{28}ClNO_2}$	C, 71.58 H, 7.31	$71.78 \\ 7.54$
2,2-Diphenyl-6-bromocyclohexanone	117-119.5	$\mathrm{C_{18}H_{17}BrO}$	C, 65.66 H, 5.21	$65.69 \\ 5.39$
,2-Diphenyl-6-morpholinocyclohexanone	124.5 - 125	$\mathbf{C_{22}H_{25}NO_{2}}$	C, 78.77 H, 7.51	78.98 7.71
2.2-Diphenyl-6-piperidinocyclohexanone	121.5-122	C ₂₃ H ₂₇ NO	C, 82.84 H, 8.16	$\begin{array}{r} 83.12\\ 7.63\end{array}$

matic portion have been the subject of recent studies (1). The excellent paper by Gutsche (3) concerning ring enlargements with diazomethane and phenyldiazomethane prompts us to record similar reactions used by us for the preparation of intermediates in the synthesis of phenyl- and diphenylcycloalkylamines in an extension of this series.

References

- BURGER, A., and YOST, W. L. J. Amer. Chem. Soc., 1948, 70, 2198.
- GIRAITIS, A. P., and MULLOCK, J. L. J. Amer. Chem. Soc., 1937, 59, 951.
- 3. GUTSCHE, C. D. J. Amer. Chem. Soc., 1949, 71, 3513.
- 4. MEERWEIN, H. Ann., 1913, 396, 200, 232.
- 5. QUDRAT-I-KHUDA, M., and GHOSH, S. K. J. Indian Chem. Soc., 1940, 17, 19.

We prepared 2-phenylcycloheptanone (bp 133°-137°,