
EFFICIENT SYNTHESIS OF 1-SUBSTITUTED 2,5-DICYANOPYRROLIDINES BY THE STRECKER REACTION USING SUCCINALDEHYDE AND PRIMARY AMINES, AND THEIR STEREOCHEMISTRY

Kazumasa Takahashi[®], Hiroyuki Saitoh, Katsuyuki Ogura, and Hirotada Iida Department of Synthetic Chemistry, Faculty of Engineering, Chiba University, Yayoi-cho, Chiba 260, Japan

<u>Abstract</u> — An efficient sequence proposed here for new synthesis of 1-substituted 2,5-dicyanopyrrolidines involves the simple Strecker reaction using succinaldehyde bis-sodium bisulfite and primary amines. Furthermore, their stereochemistry is also discussed.

lpha-Aminonitriles are known to be synthetically equivalent to a carbonyl group 1 and important as masked acyl anion eqiivalents in the formation of C-C bonds². In our previous papers^{3,4}, a preparative method and the synthetic utility of 1-substituted 2,6-dicyanopiperidines, which are cyclic α -aminonitriles, were reported. However, there is no information on a synthetic method of 1-substituted 2,5-dicyanopyrrolidines. We report here that the Strecker reaction of succinaldehyde with primary alkyl- and arylamines affords 1-substituted 2,5-dicyanopyrrolidines (3) in good yields, and we also discuss their stereochemistry. An efficient sequence for the synthesis of 3 involves the simple reactions depicted in Scheme 1: Firstly, preparation of succinaldehyde bis-sodium bisulfite dihydrate (2) was carried out by heating a mixture of 2,5-dimethoxytetrahydrofuran (1) and saturated sodium hydrogensulfite solution according to the reported procedure⁵. Isolated 2 (34.4 g, 0.1 mol) was then dissolved in 850 ml of water, and an aqueous solution (150 ml) of the primary alkyl- or arylamine (0.1 mol) was added dropwise to the solution at room temperature under a nitrogen atmosphere. After the solution was stirred for 3 days, addition of powdery potassium cyanide (13.0 g, 0.2 mol) gave 3 in good yield. For example, when methylamine was used, 1-methyl-2,5-dicyanopyrrolidine (3a) was obtained in 86% yield. Likewise, when

ethyl-, n-butyl-, benzyl-, phenethyl-, and isopropylamines and aniline were used, l-ethyl-, l-n-butyl-, l-benzyl-, l-phenethyl-, l-isopropyl-, and l-phenyl-2,5dicyanopyrrolidines (3b, 3c, 3d, 3e, 3g, and 3h, respectively) were obtained in 56-98% yields. p-Anisidine which is solid and insoluble in water, was used after being transformed to water-soluble p-methoxyanilinium hydrogensulfite, but the formation of l-(p-methoxyphenyl)-2,5-dicyanopyrrolidine (3f) was resulted in low yield (26%).

Except the case of 3h which gave only the cis-isomer, all pyrrolidines 3 obtained in this work were prepared as a mixture of cis- and trans-isomers. The configurational determination of five-membered rings are generally difficult⁶. However, the configurations of the two cyano groups of each stereoisomer were examined by 1 H-NMR (270 MHz) (see Table). Pyrrolidines such as 3b, 3c, 3d, and 3e, which possess a methylene group directly situated on the nitrogen atom, provide definitive evidence for the difference between cis and trans structural assignments: The methylene protons of the cis-isomer are equivalent, while those of the transisomer are unequivalent, giving rise to two distinguishable doublets with a coupling constant of about 13 Hz, which is similar to that reported for trans-1benzyl-2,6-dicyanopiperidine³. For example, in the case of 3d, the equivalent benzyl methylene protons of the cis-form give a singlet at δ 4.08, and the unequivalent those of the trans-form give two doublets with a coupling constant of 13 Hz at δ 3.66 and 4.30. The similar conclusions are drawn for <u>3b</u>, <u>3c</u>, and <u>3e</u> (see Table). On the other hand, cis- and trans-isomers of <u>3a</u>, <u>3f</u>, <u>3g</u>, and <u>3h</u>, which do not directly have the methylene group on the nitrogen atom, are not plainly distinguishable by means of ¹H-NMR.

Melting points of cis-isomers of 3b, 3d, and 3e, except oily 3c, as well as those of 1-substituted 2,6-dicyanopiperidines³ are higher than those of the transisomer. Additionally, Rf values of cis-isomers are lower than those of transisomers. These results are a general observation for all 2,5-dicyanopyrrolidines 3. While Jones and co-workers reported⁷ that cis-2,5-dialkylpyrrolidines eluted first by GC/MS, we suggest that these stereoisomers should not be treated by thermal means such as GC because of easy transformation from cis- to trans-pyrrolidines under conditions as described later.

When ¹H-NMR spectra look at from the viewpoint of the above proposal, it is generally observed for all pyrrolidines 3, except 3f and 3h which have a magnetically anisotropic benzene ring situated on the nitrogen atom, that cis-methine protons α to the CN group are less shielded from 0.04 to 0.23 ppm than trans-methine protons. On the other hand, the cis-methine protons of 3f and 3h are more shielded, from 0.02 to 0.05 ppm by the magnetic anisotropic effect of the benzene ring, than trans-methine protons. Thus, the apparent unification for differences between cis- and trans-isomers was recognized in the physical properties of melting points, Rf values, and ¹H-NMR spectra.

Scheme	2.	Thermal	interconversion
--------	----	---------	-----------------

CN

	70 °C in EtOH			trans-form
cis-3b	70 °C, 1 h	→	trans-3b	(428)
~~	70 °C, 2 h		trans-3b	(59%)
cis-3b	70 °C, 1 h		~~	• •
cis-3c	70 °C 2 b	`	trans-3c	(42%)
cis-3c	70 °C, 2 h	\rightarrow	trans-3c	(59%)
cis-3h	70 °C, 4 h	`	trans-3h	(36%)
~~	70 °C, 8 h	•	~~~	
cis-3h	-	\rightarrow	trans-3h	(38%)

CN

As the typical examples of thermal interconversion, cis 3b, 3c, and 3h were converted to these trans-forms. Thus, when cis-3b in ethanol was heated at 70 °C for 1 h, partial conversion of cis-3b to trans-3b was confirmed by isolating both cis-(58%) and trans-isomers (42%). When the heating time was 2 h, the conversion ratio of cis : trans was 41% : 59%. Likewise, cis-3c was converted to 42% or 59% of trans-3c by heating for 1 h or 2 h, respectively. Similary, cis-3h, obtained as a single isomer, was converted to 36% or 38% of trans-3h by heating 4 h or 8 h, respectively. These results suggest that cis-pyrrolidines 3 are obtained under kinetically-controlled conditions, and thermodynamically converted to trans-pyrrolidines. The facility for the conversion is presumed to be due to the substituent (R) on the nitrogen atom.

The work using $\frac{3}{2}$ as synthetic reagents for the preparation of useful diketones and pyrrolidine alkaloids is in progress, and will be reported in the near future.

EXPERIMENTAL

All melting points were taken on a Yanagimoto micro-melting point apparatus and are uncorrected. ¹H-NMR spectra were determined with a JEOL FX-270 (270 MHz) nuclear magnetic resonance spectrometer using tetramethylsilane as an internal standard. IR spectra were taken with Diffraction Grating Infrared (Japan Spectroscopic Co. LTD., A-202 type). Microanalytical data were obtained using a Perkin-Elmer 240 elemental analyzer.

(I) <u>Preparation of succinaldehyde bis-sodium bisulfite dihydrate</u> (2). Preparation of 2 was carried out by a procedure reported in the literature⁵ as follows: To an aqueous solution (800 ml) of saturated sodium hydrogensulfite was added 2,5-dimethoxytetrahydrofuran (40.0 g, 0.303 mol), and then the solution was heated at 100 °C for 11 h and cooled to room temperature. After adding ethanol (80 ml) to the solution, large amounts of white precipitate appeared. The precipitate was collected, and recrystallized from 60% ethanol. Thus, 2 was obtained in up to 90% yield.

(II) <u>Preparation of 1-substituted 2,5-dicyanopyrrolidines</u> (3). <u>Synthesis of 1-n-butyl-2,5-dicyanopyrrolidine</u> (3c) as the typical example: To a solution of 2 (34.4 g, 0.1 mol) dissolved in water (850 ml) was added dropwise an aqueous solution (150 ml) of n-butylamine (7.3 g, 0.1 mol) under a nitrogen atmosphere. After the solution was stirred for 3 days at room temperature, powdery potassium cyanide

-2908 -

Product 3	Yield	Isomer	mp	Molecular	I.R.KBr	$-\frac{1_{H-N.M.R.b}}{N-CH_2R} \frac{(CDCl_3)}{N-CH_2R}$	δ[ppm]
r ~	[%]	[ratio,%]	[°C]	Formular ^a		N-CH ₂ R ¹	CH(a to CN)
3a R=CH ₃	86	cis: 45	87.0- 88.0	C7H9N3	2250	2.67(3H,s,CH ₃)	3.73-3.78(2H,m)
<u> </u>		trans:55	35.5	(135.2)	2230 2240	2.63(3H,s,CH ₃)	3.70-3.74(2H,m)
		cis: 26	53.0	C H N	2240	2.96(2H,q,J=7.3Hz)	3.94-4.03(2H,m)
^{3b} ^{R=C} 2 ^H 5	69	trans:74	oil	^C 8 ^H 11 ^N 3 (149.2)	2240(lf) 2260(lf)	2.69(1H,d-q,J=12&7Hz) 3.07(1H,d-q,J=12&7Hz)	3.79-3.82(2H,m)
		cis: 50	oil	· · · · · · · · · · · · · · · · · · ·	2240(lf)	2.89(2H,t,J=7.7Hz)	3.92-3.97(2H,m)
³ c [™] R=n−C ₄ ^H 9	72	trans:50	oil	^C 10 ^H 15 ^N 3 (177.2)	2240(lf) 2260(lf)	2.67(1H,d-t,J=12&7.7Hz) 2.97(1H,d-t,J=12&7.7Hz)	3.77-3.81(2H,m)
		cis: 58	75.6	<i>a</i>	2230	4.08(2H,s)	3.91-3.96(2H,m)
^{3d} R=CH ₂ C ₆ H ₅	74	trans:42	oil	^C 13 ^H 13 ^N 3 (211.3)	2230(lf) 2260(lf)	3.66(1H,d,J=13Hz) 4.30(1H,d,J=13Hz)	3.68-3.78(2H,m)
		cis: 56	80.4	C U N	2240	3.19(2H,t,J=7.3Hz)	3.96-4.02(2H,m)
^{3e} ^{R=(CH₂)₂C₆H₅}	98	trans:44	oil	^C 14 ^H 15 ^N 3 (225.3)	2240(1f) 2260(1f)	2.92(1H,d-t,J=12&7Hz) 3.27(1H,d-t,J=12&7Hz)	3.77-3.83(2H,m)
		cis: 83	134.5		2250		4.46-4.51(2H,m)
3f R=p-MeOC ₆ H ₄	26	trans:17	130.4- 131.4	$C_{13}H_{13}N_{3}O$ (227.3)	2220 2250		4.51-4.53(2H,m)
- 	·····	cis: 89	113.8- 114.3	с _{9^н13^N3}	2240	3.24(1H,q-q,J=6.3Hz) NCH(Me) ₂	4.05-4.13(2H,m)
3g R=iso-C ₃ H ₇	56	trans:11	54.0	(163.2)	2250	3.07(1H,q-q,J=6.3Hz) NCH(Me)2	3.91-3.94(2H,m)
	75	cis: 100	188.0- 189.0	C ₁₂ ^H 11 ^N 3	2240		4.52-4.56(2H,m)
^{3h} ^{R=C} 6 ^H 5		trans:0 ^C	161.5- 163.0	(197.2)	2250		4.57-4.59(2H,m)

b. Measured by N.M.R. spectrometer (270 MHz). c. Obtained after equilibration experiment (see Text).

Table.

Physical properties

of pyrrolidines (3) prepared

(13.0 g, 0.2 mol) was added, and stirred for 6 h, then the solution was extracted with dichloromethane (4 x 150 ml). The combined organic layers were dried over anhydrous sodium sulfate. After removal of solvent, the residue was purified by means of column chromatography (silica gel/benzene). Trans-3c (6.43 g) eluted first, and cis-3c (6.33 g) later. Thus, 3c was obtained in 72% yield (12.76 g). Other pyrrolidines 3 were also obtained in a similar manner. These physical properties are summarized in Table.

REFERENCES

- 1. F. J. McEvoy and J. D. Albright, <u>J. Org. Chem.</u>, 1979, <u>44</u>, 4597.
- 2. S. F. Martin, Synthesis, 1979, 633.
- K. Takahashi, T. Mikajiri, H. Kurita, K. Ogura and H. Iida, <u>J. Org. Chem.</u>, 1985, <u>50</u>, 4372.
- 4. K. Takahashi, H. Kurita, K. Ogura and H. Iida, ibid., 1985, 50, 4368.
- 5. W. R. Boehme and M. Tobkes, <u>U. S. 2,857,427</u> (1958): <u>C. A.</u> 1959, <u>53</u>, 7995.
- B. Kagan, <u>Stereochemistry, Fundamentals and Methods</u>, vol. 1, Georg Thieme Publishers Stuttgart 1977, p89.

7. T. H. Jones, M. S. Blum and H. M. Fales, Tetrahedron lett., 1979, 1031.

Received, 25th June, 1986