

Article

Subscriber access provided by Queen Mary, University of London

Tracking Hole Transport in DNA Hairpins Using a Phenylethynylguanine Nucleobase

Kristen E Brown, Arunoday P.N. Singh, Yi-Lin Wu, Ashutosh Kumar Mishra, Jiawang Zhou, Frederick D. Lewis, Ryan M. Young, and Michael R. Wasielewski

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.7b06998 • Publication Date (Web): 02 Aug 2017 Downloaded from http://pubs.acs.org on August 2, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Tracking Hole Transport in DNA Hairpins Using a Phenylethynylguanine Nucleobase

Kristen E. Brown, Arunoday P. N. Singh, Yi-Lin Wu, Ashutosh Kumar Mishra, Jiawang Zhou, Frederick D. Lewis*, Ryan M. Young*, Michael R. Wasielewski*

Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-31131

ABSTRACT: The hole transport dynamics of DNA hairpins possessing a stilbene electron acceptor and donor along with a modified guanine (G) nucleobase, specifically 8-(4'phenylethynyl)deoxyguanosine, or EG, have been investigated. The nearly indistinguishable oxidation potentials of EG and G and unique spectroscopic characteristics of EG⁺ make it wellsuited for directly observing transient hole occupation during charge transport between a stilbene electron donor and acceptor. In contrast to the cation radical G^{+•}, EG^{+•} possesses a strong absorption near 460 nm and has a distinct Raman-active ethynyl stretch. Both spectroscopic characteristics are easily distinguished from those of the stilbene donor/acceptor radical ion chromophores. Employing EG, we observe its role as a shallow hole trap, or as an intermediate hole transport site when a deeper trap state is present. Using a combination of ultrafast absorption and stimulated Raman spectroscopies, the hole-transport dynamics are observed to be similar in systems having EG vs. G bases, with small perturbations to the charge transport rates and yields. These results show EG can be deployed at specified locations throughout the sequence to report on hole occupancy, thereby enabling detailed monitoring of the hole transport dynamics with base-site specificity.

The observation of wire-like charge transport in duplex DNA¹⁻³ has prompted extensive, careful design of DNA sequences, specifically tailored to achieve high-efficiency hole transport. Substitution of diblock polypurine sequences in lieu of naturally occurring purine-pyrimidine mixed sequences has led to significantly higher efficiencies for photoinduced charge transport⁴⁻⁵ as has modification to natural base pairs.⁶⁻⁹ Of particular interest is the role of guanine, which has the lowest oxidation potential of the natural nucleobases.¹⁰⁻¹¹ As such, guanine acts as a shallow hole trap that can influence the dynamics of competitive charge recombination and charge transport in DNA. Chemical reactions of the guanine cation radical can also lead to DNA strand cleavage,¹²⁻¹³ and studies of photoinduced oxidative strand cleavage in duplexes containing multiple G-C base pairs by Barton, Schuster, and Giese in the 1990's led to the current models for hole hopping in DNA.¹⁴⁻¹⁶

While previous studies have demonstrated efficient hole transport in G-tracts across series of A_mG_n diblock purine sequences,⁴ mechanistic understanding of these systems relies on a detailed kinetic analysis of the donor and acceptor signals. In particular, direct detection of oxidized intermediates, specifically the guanine cation (G^{+}) , remains challenging. Electronic absorption spectroscopy has, until recently, been limited to studies of the more stable, neutral radical (G-H). generated by flash photolysis following one-electron oxidation by the sulfate radical anion (SO₄⁻).¹⁷⁻¹⁸ Kobayashi and Tagawa have reported the transient absorption spectra of G^{+} formed upon pulse radiolysis-transient absorption of several duplexes containing one or more G:C base pairs and its deprotonation to form the more stable neutral radical (G-H). Both reactive intermediates have broad, weak transient spectra in the 350-700 nm region with no characteristic absorption bands.19

Our recent work²⁰ using a diphenylacetylenedicarboxamide hole donor revealed a weak G^{+•} absorption in the visible spectrum, where it is typically obscured by the much stronger and broader absorption features of the chromophores typically employed in these studies.²¹ Moreover, it was demonstrated that the already weak intensity further decreases with the length of the purine-tract in which it is embedded, which makes directly tracking the specific location of the photoinjected hole quite challenging.

To overcome these issues, we recently synthesized and studied an electron-rich guanine derivative, 8-(4'-aminophenylethynyl)guanine, **GEAn**, which provided evidence of hole delocalization in a G-quadruplex architecture using femtosecond transient absorption (fsTA) spectroscopy and femtosecond stimulated Raman spectroscopy (FSRS).²² The addition of the aminophenylethynyl group to the 8-position of G results in a strong absorption band for the cation radical species, ca. 510 nm, with only a minor shift in the oxidation potential of the G unit, making this species an excellent starting point for designing a spectroscopic tag to study hole transport dynamics within DNA.

Here, we aim to optically identify the role of intermediate hole acceptors in hairpin-forming DNA charge conduits through development of a synthetically modified guanine nucleobase analogue, specifically 8-(4'-phenylethynyl)deoxyguanosine, EG (Chart 1a). We observe a strong EG^{+•} absorption band at 460 nm, far removed from the congested bands in the 500-600 nm region of the spectrum of the stilbene-based donor and acceptor we have previously employed,²⁰ which thereby allows us to track the hole population directly. The similarity of the oxidation potential to G means that EG can be placed at a specific location within a G-tract and serve as a site-specific indicator of hole arrival, with minimal expected perturbation of the dynamics. In

addition, the phenylethynyl group is strongly Raman active, which provides an alternative, basespecific approach to track the hole location using FSRS.

To provide direct spectroscopic evidence of EG as a hole acceptor, we incorporated EG into a series of DNA hairpins (Chart 1b), capped with a non-reactive thymine bridge (EG-1) or photooxidant stilbenedicarboximide (Sa) linker (EG-2). We also probe the role of EG in the presence of a deep hole trap (EG-3, -4), namely stilbenediether (Sd). The stilbene linkers have been demonstrated to produce stable B-DNA hairpins and display distinct spectral tags.²³⁻²⁴ We selected A₂G as the initial bridge based on the high quantum yield of charge separation (ca. 25%) in related systems.⁴ The four hairpins were designed to: 1) identify the spectral signature of EG⁺⁺ when employed as a (shallow) terminal trap state, 2) probe EG⁺⁺ as an intermediary acceptor state, and 3) distinguish EG⁺⁺ from G⁺⁺ within a hole transport conduit. Reference hairpins G-2–4 with G in place of EG were also studied to compare the dynamics and spectra. We find that, indeed, EG can serve as a site-specific probe of the hole location in these systems, and maintains similar transport and recombination behavior compared to sequences with unsubstituted G despite small differences in hole transport rates.

Chart 1. Structures of a) Sa, Sd, EG and b) the hairpins in this study. Hole transfer pathway highlighted in red. The control compound $EG-H_2$ is the protonated version of EG.

MATERIALS AND METHODS

Synthesis and characterization of 8-(4'-phenylethynyl)deoxyguanosine (EG-H₂), hairpins EG-1-4, G-1-4, and relevant reference compounds are provided in the Supporting Information (SI) along with experimental details for the time-resolved spectroscopies. A description of the fitting methodology and details of the applied kinetic models are also presented in the SI.

RESULTS AND ANALYSIS

Electrochemistry. Differential pulse voltammetry provides oxidation potentials of $E_{ox} = 1.12$ V and 1.11 V vs. SCE (0.1 M *n*Bu₄NPF₆ in DMF) for **EG-H₂** and deoxyguanosine, respectively (Figure S1), which are effectively the same within the instrumental resolution. The oxidation potential of the next most easily oxidized nucleobase, adenine, is higher by about 0.4 eV,²⁵ so the overall energetic landscape of the EG-containing sequences remains similar to those with G. Any

small shift in potential resulting from incorporation in the DNA hairpins is expected to only slightly perturb the hole transport dynamics, as discussed in detail below.

Steady-State Spectroscopy. Figure 1 shows the absorption spectra of the hairpins normalized at 260 nm and their circular dichroism (CD) spectra. The UV spectrum of **EG-1** reveals that the addition of the phenylethynyl substituent at the 8-position red-shifts the guanine ground-state absorption spectrum from 253 nm with a shoulder at 272 nm to 332 nm with a shoulder at 350 nm. The structured absorption spectrum is reminiscent of the L_a and L_b bands observed in guanine.²⁶⁻²⁷ The EG absorption coincides with the Sa and Sd steady-state absorption, as is apparent in the spectra of **EG-2-4**. Each of these Sa-containing hairpins shows an increase in the 330 nm absorption band relative to the 260 nm nucleobase absorption band. This increase is demonstrated in Figure S2 (SI) by comparison of the spectra of compounds **EG-ref** and **Sa-ref** which contain one EG or Sa chromophore, respectively, and 6 A:T base pairs.

ACS Paragon Plus Environment

Figure 1. a) UV/Vis absorption spectra normalized to the 260 nm band and **b)** Circular dichroism spectra of **EG** hairpins (3 μ M) in phosphate buffer (10 mM phosphate, 0.1 M NaCl, pH 7.2).

The CD spectra of hairpins **EG-2–4** indicates they adopt B-DNA structures similar to previously studied Sa-linked hairpins,²⁸ as evidenced by the sign and intensity pattern in the short-wavelength portion of the spectrum (200–300 nm). High values for the first derivatives of the thermal dissociation profiles for sequences **EG-1–4** (CD-melting >50 °C, Figure S3) indicates the phenylethynyl substituent at the 8-position of guanine enhances duplex stability, presumably by extending into the major grove without disrupting the base pairing. The bands in the long-wavelength region (300–400 nm) are attributed to induced CD of the two or three achiral chromophores which have absorption maxima in the same wavelength region of the CD minima.²⁸ In contrast, the **EG-1** spectrum has a strong positive band at 260 nm and a negative band around 215 nm which indicate some distinct features of an A-DNA-like structure.²⁹ Poly(dG).poly(dC) sequences similar to that of **EG-1** are known to form intermediate or mixed

B/A type structures.^{30,31} This structural difference should not compromise the utility of **EG-1** as a model sequence designed to probe the behavior of EG in the absence of stilbene chromophores. The decreased intensity of the induced CD band of **EG-1** is a consequence of the absence of the stilbene chromophores.

Transient Absorption Spectroscopy. Femtosecond transient absorption spectroscopy is used to initiate and monitor hole transport dynamics. Briefly, transient absorption spectra were acquired after 350 nm excitation followed by a broadband visible-to-NIR probe. At the excitation wavelength of 350 nm, we expect an approximate 2:1 Sa:EG co-excitation ratio. The normalized absorption of **EG-2** and **EG-3**, the latter of which contains both stilbene chromophores, reveals that Sd also contributes to 18% of the total absorption at 350 nm, but is not expected to impact the hole transport properties of the system.³² In these systems, the fraction of absorbed photons leading to the population of ^{1*}Sa from which hole injection occurs is approximately 0.55 (See Figures 1 and S2). All samples were purged with N₂ and stirred to minimize the effects of degradation and local heating.

We first investigated the excited-state behavior of the EG-H₂ chromophore in methanol, shown in Figure 2a. Excitation of EG at 350 nm results in a sharp excited-state absorption band at 500 nm which extends well into the near-infrared region with two small maxima at 1000 and 1250 nm. The signal decays bi-exponentially with $\tau_1 = 6$ ps and $\tau_2 = 18$ ps, with minimal spectral evolution. The relaxation dynamics are largely similar when EG is placed into a duplex hairpin, as in EG-1 (Figure 2b): the maximum absorption shifts to 505 nm, and the bi-exponential decay is somewhat slower (9 and 27 ps). The location of the 505 nm absorption is reminiscent of the GEAn⁺⁺ absorption; however, the similarity of the spectra and dynamics of EG-1 with those of the isolated EG-H₂ strongly suggests that the 505 nm band belongs to ^{1*}EG and that there is no

charge transfer or strong exciplex interaction between the EG and the neighboring C:G base pairs.

Figure 2. Transient absorption for **a**) **EG-H**₂ in methanol, and **b**) **EG-1** in aqueous buffer acquired after 350 nm, 500 μ J excitation. The excited-state maxima of ^{1*}EG in both occur near 500 nm, and decay bi-exponentially. Delays are given in ps.

The fsTA spectra for **EG-2–3** and **G-2–3** following 350 nm excitation are shown in Figures 3 and S4, respectively. The spectra are dominated initially by the absorption of the ^{1*}Sa state at 577 nm.³³ Co-excitation of EG is evidenced by the narrow 510 nm band of ^{1*}EG that is likely shifted by added absorption at redder wavelengths by ^{1*}Sa. Over the next tens of picoseconds, the 577 nm band sharpens, characteristic of Sa^{–, 33} and new bands at 460 and 1000 nm appear. The 1000 nm band is also assigned to absorption by Sa^{–,} as it appears concomitantly with the 577 nm Sa^{–,} band in **G-2** where there are no additional chromophores.

We assign the new 460 nm feature that appears at later times to absorption by EG^{++} , since it appears with the same rate as the bands belonging to Sa⁻⁺ and is also absent in the reference sequences **G-2-4** (Figure S4). The shift of the 460 nm EG^{++} band relative to the guanine-quadruplex **GEAn**⁺⁺ band plausibly results from the decreased conjugation length owing to replacement of the aniline moiety with a phenyl substituent.²²

Figure 3. Femtosecond transient absorption spectra of **a**) **EG-2** and **b**) **EG-3** following 350 nm excitation. Delays are given in ps. Early time traces (blue) represent the EG excited state ($\lambda_{max} = 510 \text{ nm}$) and ^{1*}Sa excited state ($\lambda_{max} = 578 \text{ nm}$). At late times, absorption maxima of EG⁺⁺ ($\lambda_{max} = 460 \text{ nm}$) and Sa⁻⁺ ($\lambda_{max} = 577 \text{ nm}$ and 1000 nm) are apparent.

To model the hole transport dynamics in **EG-2**, we employ global kinetic analysis with the simplified model depicted in Scheme 1a. Excitation of the Sa-containing hairpins results in

relaxation (k_R) followed by charge separation (k_{CS}) to form Sa⁻⁺/EG⁺⁺. As explicit separation of the ^{1*}EG and ^{1*}Sd (and ^{1*}Sd) populations leads to a large number of parameters in the model, we simplify the kinetic model to assume a single excited-state population.³⁴ Based on the data for **EG-1**, the initial dynamics during the first ~100 ps will thus contain some evolution from the secondary ^{1*}EG population. This observation is corroborated by FSRS measurements discussed below. However, since hole transport primarily occurs after this early period, the simplified kinetic model should serve as a good approximation to those dynamics. Details of the kinetic modelling and results can be found in the SI section 3, and kinetic parameters are summarized in Table 1.

For EG-2, global analysis of the fsTA data captures the initial decay of the ^{1*}EG and ^{1*}Sa populations with one process, $\tau_R \sim 7$ ps. This relaxation comprises the initial decay of ^{1*}EG observed in EG-1, along with some of the reversible hole injection (^{1*}Sa \Rightarrow Sa⁻⁺) observed when stilbenedicarboxamide is used as a hole donor and A:T base pair as hole acceptor.³⁵ The species-associated spectrum (SAS, Figure S8) for this state, a combination of ^{1*}EG and ^{1*}Sa \Rightarrow Sa⁻⁺, supports this assignment. A similar spectrum and rate are obtained for G-2, without the 505 nm contribution from ^{1*}EG. This composite state then decays to form the Sa⁻⁺/EG⁺⁺ charge-separated state in $\tau_{CS} = 51$ ps, as indicated by the appearance of the 460 nm band. The Sa⁻⁺/EG⁺⁺ state then decays in $\tau_{EG+} = 3.4$ ns, while in G-2 the Sa⁻⁺/G⁺⁺ state decays in $\tau_{G+} = 1.4$ ns. Nanosecond transient absorption (nsTA) spectroscopy reveals the same decay kinetics on the ns-µs timescale (Figures S17 and S20), and shows the evolution to a low intensity, much longer-lived 8 µs species with an absorption maximum at 440 nm. This species is most likely the ^{3*}Sa state, as the triplet state of unsubstituted *trans*-stilbene has an absorption maximum at ca. 390 nm in viscous

solution at room temperature.³⁶ The presence of the similar band in G-2 also indicates that the

band does not originate from EG.

Scheme 1. Kinetic scheme for hole transport in **a**) **EG-2** (Sa-A₂-EG-T₃) and **b**) **EG-3** (Sa-A₂-EG-A₂-Sd) and **EG-4** (Sa-A₂-EG-G₂-Sd). Co-excitation of EG and Sa is followed by relaxation/fluorescence from ^{1*}EG and ^{1*}Sa, and reversible hole injection from ^{1*}Sa to form Sa⁻⁻-A⁺, all of which are captured in part by $k_{\rm R}$. Hole transport to EG occurs with rate $k_{\rm CS}$; the higher energy level in this state represents **EG-3** with the bridge B₂ = A₂, while the lower energy state represents **EG-4** with the bridge B₂ = G₂. In **EG-3-4** the rate ($k_{\rm Sd}$) and yield of trapping by Sd⁺⁺ are determined by the sequence of intervening base pairs B: either A₂ or G₂. States in gray are not captured by the data modelling. Similar schemes hold for **G-2** (Sa-A₂-EG-T₃) and for **G-3** (Sa-A₂-G-A₂-Sd) and **G-4** (Sa-A₂-G-G₂-Sd).

Table 1. Time constants and Φ_{Sd} derived from global fits of the fs/nsTA datasets to the first order kinetic model presented in Scheme 1. $\tau_x = (k_x)^{-1}$. Uncertainties are reported as the standard error of the fit. Explicit decays pathways to the ground state are neglected, such that each time constant represents an effective time.

	τ_R ,	τ_{CS} ,	$ au_{EG^+}\left(au_{G^+} ight)$	τ_{Sd} ,	τ_{CRI} ,	τ _{CR2} ,	Φ_{Sd}	Φ_{Sd}	Φ_{Sd}	Φ_{Sd}
	ps^{a}	ps^{a}	ns ^a	ns ^a	ns ^b	$\mu s^{b,e}$	(5 ns)	$(7 \text{ ns})^{a}$	$(10 \text{ ns})^{b}$	$(40 \text{ ns})^{c}$
EG-2	7.0 ± 0.3	51 ± 1	3.41 ± 0.01							
EG-3	1.7 ± 0.3	34 ± 1	2.74 ± 0.04	14 ± 1	5.8 ± 0.6	7.1 ± 0.6		<	< 1%	
EG-4	3.6 ± 0.3	37 ± 1	1.92 ± 0.04	4.4 ± 0.2	23 ± 1	3.0 ± 0.1	0.16	0.16	0.15	0.05
G-2	5.0 ± 0.3	40 ± 1	1.40 ± 0.01							
G-3	2.9 ± 0.3	39 ± 1	1.29 ± 0.01	16 ± 2	~1000		0.05	0.03	0.06	0.03
G-4	7.6 ± 0.3	57 ± 1	0.86 ± 0.02	2.2 ± 0.1	7.2 ± 0.2	0.7 ± 0.1	0.26 ^d	0.21	0.20	0.07

a) Determined from fsTA data.

b) Determined from nsTA data.

c) Value corrected for contamination by 3* Sd by subtracting the spectrum at 40 μ s.

d) Reference value taken from Ref. 4 and corrected for the fraction of Sa extinction coefficient at 350 nm ($\eta_{Sa} = 0.75$).

e) May include other decay pathways, see SI.

The EG-2 kinetics inform the hole transfer dynamics in sequences EG-3-4, with Sd as the deeper hole trap. In both EG-3 and EG-4, the decreased initial intensity of the 505 nm ^{1*}EG band relative to that in EG-2 is attributed to competitive absorption by Sd (Figures 1 and S2). The spectra for both EG-3 and G-3 (Figure S4) are similar to those for EG-2 and G-2, respectively, with the initial appearance of the ^{1*}Sa and ^{1*}EG bands followed by the formation of the Sa^{-*}/EG^{+*} radical pair. Despite the expected slower recombination from Sa^{-*}/EG^{+*} for EG-3, the fsTA data (Figure 3b) do not clearly exhibit the 533 nm absorption associated with Sd^{+*} within the first 7 ns.

To model the charge separation and recombination processes, we extend the same kinetic model used above, allowing the possibility of hole trapping from the Sa^{-•}/EG^{+•} state to form Sa⁻//Sd^{+•} with rate k_{Sd} (Scheme 1b). The additional process changes the rate of decay of EG^{+•} to

$$k_{EG+} = k_{CR0} + k_{Sd} \tag{1a}$$

$$k_{G+} = k_{CR0} + k_{Sd} \tag{1b}$$

ACS Paragon Plus Environment

where k_{CR0} is the value of k_{EG+} for **EG-2** and represents the charge recombination from EG⁺⁺. A similar situation exists for **G-2–4** with k_{G+} for charge recombination from G⁺⁺. For **EG-3**, charge separation occurs with a ~35 ps time constant to populate the Sa⁻⁺/EG⁺⁺ state, with absorption bands around 460, 577, and 1000 nm. This state decays with minor spectral changes; however, a small signal persists beyond the ~8 ns window of the fsTA experiment. The measured decay time of Sa⁻⁺/EG⁺⁺ is 2.7 ns in **EG-3**, which is faster compared to that in **EG-2** (3.4 ns), suggesting a possible hole trapping pathway. The nsTA data (Figures S16-S23) show that the remaining population at long times largely decays over the next 5.8 ns (charge recombination) to a long-lived signal around 530 nm (Figure 4a), near the expected absorption of Sd^{++.37}

The spectra at long times (>>10 μ s) do not show absorption from Sa⁻⁺ as would be expected for the fully charge-separated state. Instead, the 440 nm feature is reminiscent of the ^{3*}Sa spectrum. The rapid disappearance suggests that it decays by triplet-triplet energy transfer to a lower lying triplet state. In this case, the isolated 530 nm absorption feature could be the T_n \leftarrow T₁ transition of ^{3*}Sd.³⁶ However, it is also possible that some permanent oxidation of Sd is occurring due to incomplete removal of oxygen, resulting in a long-lived Sd⁺⁺ population that is not accompanied by the Sa⁻⁺, resulting in the 530 nm absorption band.

In **G-3**, there is more direct spectral evidence for hole trapping in low yield. After fast relaxation, charge separation occurs in 39 ps, followed by a 1.3 ns decay. Figure 4b shows that at long delays (3-7 ns), inversion of the 533 and 577 nm signal is observed. The low amplitude of the signal results from fast (1.3 ns) recombination.

60

Figure 4. Normalized fsTA spectra for **a**) **EG-3** and **b**) **G-3** at long times showing the inversion of the 533 and 577 nm bands. Data are normalized to the Sa⁻ absorption at 577 nm.

The fsTA data for **EG-4** and **G-4** are both shown in Figure 5. Initially, the spectra appear similar to those of the hairpins discussed above. However, at long delays, we observe an increase in the absorption near 533 nm, characteristic of the Sa⁻⁺/Sd⁺⁺ pair. At intermediate times in **EG-4** we observe an increased intensity near 460 nm, presumably owing to absorption by transiently

ACS Paragon Plus Environment

oxidized EG before the rise of the Sd^{+} band (Figure 5a, inset); a feature not observed in **G-4** (Figure 5b, inset). The noticeable inversion of the 533 and 577 nm bands occurs after 2 ns, indicating a significant yield of hole trapping within the experimental window.

Figure 5. fsTA spectra of **a**) **EG-4** and **b**) **G-4** following 350 nm excitation. Delays are given in ps. At long delays hole trapping at Sd⁺⁺ in moderate yields is observed at 480 and 533 nm. Inset: Increased amplitude near 460 nm at intermediate (20-1000 ps) delays shows the characteristic absorption of EG⁺⁺ in **EG-4** indicating the transit of the hole through EG before trapping at Sd.

The kinetic processes are modelled as previously discussed. The lifetime of the Sa^{-}/EG^{+} intermediate state in EG-4 is 1.9 ns, compared to the longer 3.4 ns lifetime in EG-2, which again

suggests the presence of an additional decay pathway. The characteristic Sa⁻⁺/Sd⁺⁺ spectrum decays with $\tau_{CR1} = 23$ ns. A second, slower recombination event is observed with $\tau_{CR2} = 3 \mu s$, as evidenced by the similar species-associated spectrum with characteristic Sa⁻⁺/Sd⁺⁺ features. This process may arise from minor dynamical conformation(s) which disfavor charge recombination. Following the slower charge recombination, we observe the same low-amplitude signal at 530 nm as in EG-3. The reference sequence G-4 exhibits similar kinetics to those of EG-4, with the decay of the Sa⁻⁺/G⁺⁺ intermediate occurring with a time constant of 860 ps, compared to 1400 ps for G-2. Multiple recombination times are also observed by nsTA, with $\tau_{CR} = 7.2$ and 650 ns, although the amplitude of the slower component is low (Figure S22).

Femtosecond Stimulated Raman Spectroscopy. FSRS data were acquired with a 350 nm actinic pump, and a ps Raman pump/fs broadband probe pair. The Raman pump wavelength (λ_{RP}) was tuned to 480 nm to be close to resonance with the ^{1*}EG and EG⁺⁺ transitions. We also utilized a 600 nm Raman pump to resonantly enhance ^{1*}Sa and Sa⁻⁺ signals to track the hole injection process. FSRS spectra of EG-1 (Figure 6a), collected using λ_{RP} = 480 nm to resonantly enhance ^{1*}EG, reveal several excited state bands between 500 cm⁻¹ and 2200 cm⁻¹ which all decay bi-exponentially. Time constants are similar to those determined by transient absorption spectroscopy. The absence of a time-dependent shift in the C=C stretching mode at 2122 cm⁻¹ corroborates the lack of charge separation in EG-1. Selected Raman mode assignments are given in the SI. In hairpins EG-2–4, the 480 nm Raman pump wavelength is also resonant with the transient EG⁺⁺ absorption. At early times, EG-2 closely matches EG-1, with low intensity peaks indicative of Sa⁻⁺ in the 1500-1600 cm⁻¹ region forming at later times (Figure S25). The C=C mode shifts to higher frequency (2172 cm⁻¹) following oxidation of EG, which directly indicates hole transfer to form EG⁺⁺.²²

Raman spectra for **EG-3** are provided in Figure S25, while those for **EG-4** are provided in Figure 6b. The C=C mode of ^{1*}EG initially following excitation appears at 2104 cm⁻¹. At late times, the spectra closely match those of **EG-2** indicating similar hole transfer to EG^{+*}. In contrast to **EG-2**, the early time spectra in the 1100-1500 cm⁻¹ region are broadened with additional peaks between 1300-1500 cm⁻¹ and decreased relative intensity of the 1175 cm⁻¹ bands.

Figure 6. FSRS spectra of EG-1 and 4 following 350 nm excitation. a) Spectra of EG-1 acquired with

 $\lambda_{rp} = 480$ nm. **b**) Spectra of EG-4 ($\lambda_{RP} = 480$ nm) showing ^{1*}EG at early times and composite spectra of EG⁺⁺ and Sa⁻⁺ at late times. **c**) Spectra of EG-4 acquired with $\lambda_{RP} = 600$ nm showing ^{1*}Sa at early times and Sa⁻⁺ at late times. Delay times are provided in ps. See the SI for mode assignments.

We also probe the dynamics of hole injection using a 600 nm Raman pump. Representative

spectra for **EG-4** are shown in Figure 6c, showing peaks at 1266, 1562, 1605 cm⁻¹. After 35 ps, coinciding with the formation of the Sa⁻⁺/EG⁺⁺ state, the 1605 cm⁻¹ mode becomes less pronounced. The appearance of the 1605 cm⁻¹ mode as a small shoulder on the 1560 cm⁻¹ band, suggests its attribution to ^{1*}Sa. The DFT-calculated Raman spectra identify the 1605 cm⁻¹ feature as the amide stretch of ^{1*}Sa, and the 1266 and 1562 cm⁻¹ bands as the vinyl bending and stretching modes, respectively, of Sa⁻⁺ (Figure S38). In **EG-4**, there is a long-lived population with a peak at 1560 cm⁻¹ that is consistent with the vinyl C=C stretches in both Sa⁻⁺ and Sd⁺⁺ (see SI, Figures S39-40), which keeps with the modelling of the transient absorption data.

DISCUSSION

Ethynylguanine Absorption and Relaxation. The similarity between the EG-1 and the isolated EG-H₂ nucleoside dynamics and the lack of significant spectral evolution (Figure 1) strongly indicate that electron transfer or other photoprocesses do not occur between ^{1*}EG and the adjacent C:G base pair in EG-1. The observed dynamics, thus, are the excited-state decay of ^{1*}EG. It is not unexpected that the addition of the phenylethynyl substituent at the 8-position would perturb the relaxation dynamics of unsubstituted guanine.²⁶ Increased radiative decay times have been observed in nucleobases modified such that torsion is restricted around nuclear coordinates that gate non-radiative decay via a conical intersection.³⁸ The vertical excited state may quickly relax to a configuration where internal conversion is slowed, such as through an intramolecular charge transfer state as was shown in a recent theoretical study of 8-vinylguanine.³⁹ Additional work is necessary to identify the nature of bi-exponential decay in

 $EG-H_2$ and is beyond the scope of the current investigation. Importantly, however, parallel excitation of EG along with Sa appears to result in a short-lived population of ^{1*}EG that does not undergo charge transfer, and thus should not greatly alter the hole transport dynamics originating from ^{1*}Sa.

Hole Injection and Charge Separation. The FSRS spectra, acquired at 600 nm to resonantly enhance the 600 nm ^{1*}Sa \Rightarrow Sa⁻⁻ absorption, indicate a reversible charge injection process. As seen in Figure 7, in the first few ps following excitation, we observe an apparent combination of ^{1*}Sa and Sa⁻⁻ Raman features. We have previously observed that hole injection from ^{1*}Sa into a neighboring A-block is reversible,³⁵ obstructing resolution of the hole injection step. The FSRS spectra support this assessment. With a rapid pseudo-equilibrium there will be sizeable population of both species, as both possess an electronic transition at this Raman pump wavelength, until the population drains into a lower energy state, in this case Sa⁻⁻/EG⁺⁺ in the ~30 ps charge separation. Complete modeling of these processes is prohibitive, as discussed above, and so they are collectively captured with the relaxation pathway $k_{\rm R}$. While not fully resolving these kinetics, the FSRS spectra offer a direct observation of the reversible injection process.

Figure 7. Comparison of the FSRS spectrum of **EG-4** acquired at $\Delta t = 1.0$ ps ($\lambda_{RP} = 600$ nm) to the calculated spectra of ^{1*}Sa and Sa⁻ at the B3LYP/6-31G* level with 15 cm⁻¹ Lorentzian broadening. The feature at 1605 cm⁻¹ is the amide stretch of ^{1*}Sa, while the peaks at 1266 and 1565 cm⁻¹ are the vinyl bending and stretching modes of Sa⁻, all of which are present at this delay due to the reversible charge injection.

The rise in the Sa^{-*} signal also provides insight into the charge transport process in systems with a small A-block neighboring the donor. Direct kinetic comparison of the $\lambda_{RP} = 480$ nm and $\lambda_{RP} = 600$ nm Raman experiments for EG-2-4 (Figures S28-30 and S33-35, respectively) reveal nearly identical formation times for (isolated) Sa^{-*} and EG^{+*}. This observation is consistent with a superexchange hole transport mechanism from Sa to Sa^{-*}/EG^{+*}. Under this mechanism, thought to occur for short A-tracts (n < 3),⁴⁰⁻⁴¹ the formation of Sa^{-*} and EG^{+*} should occur concomitantly and formation of the Sa^{-*}/A^{+*} contact ion pair should not be spectrally or kinetically observable. In contrast, under a hopping mechanism, Sa^{-*} is fully reduced prior to hole transport from A^{+*} to EG^{+*}, leading to different appearance times for the two species. We note, however, that the

reversible hole injection discussed above may complicate the dynamics, and the true mechanism is likely more subtle.⁴²

Hole Trapping Dynamics. The results of the kinetic modelling of the TA data offer insight into the hole transport dynamics and hole location in the EG- and G-sequences. As discussed above, charge separation in EG-2 occurs in 50 ps. This time, and the similar analogous time in G-2 are also close to the previously observed ~30 ps charge separation times for Sa-A₂ systems.⁴³ The discrepancy likely arises from the residual parallel decay of ^{1*}EG during this time range (Scheme 1a). As shown in Table 1, the extracted values for the hole trapping time τ_{Sd} are around two orders of magnitude larger than the charge separation times, despite the similar distances. This is likely a consequence of the different charge transport mechanisms at play depending on the number of intervening base pairs between the two radicals.⁴²

Following charge separation, the Sa⁻/EG⁺⁺ state decays in 3.4 ns, almost a factor of two slower than the G-2 reference sequence. The difference in recombination rates is likely a consequence of the slightly altered ΔG_{CR} from the shift in oxidation potential of EG vs. G, although contributions from altered electronic coupling between adjacent nucleobases cannot be ruled out. While the electrochemically determined oxidation potential of EG was measured to be the same as that of G, the difference in the potentials is likely exaggerated in the DNA medium. The dielectric environment is plausibly impacted by the neighboring nucleobases, lowering the effective dielectric constant relative to the highly polar DMF solvent used for electrochemical measurements. Additionally, the structure of the duplex in the region of the modified nucleobase may be perturbed as the phenylethynyl group protrudes into the major groove, possibly altering the oxidation potential and the electronic coupling. While the altered oxidation potential affects

the recombination dynamics, the charge does not become irreversibly trapped at EG and does not prohibit using EG in the diblock architectures.

The behavior of EG⁺⁺ as a shallow hole trap can, in principle, be used to enhance the yield of charge separation in situations where recombination from the poly(purine) sequence outcompetes the deep hole trapping. By providing a site with an extended lifetime and lower recombination rate, more of the hole population can make its way to the deep trap state. While in **EG-3** we do not see a strong rise in the characteristic signature of Sd⁺⁺, there are indications that the hole is transferring to the Sd trap site. At long-times (7.7 ns, Figure 4a), there is a weak growth of the 533 nm Sd⁺⁺ signal, though the amplitude suggests a <1% trapping yield. The lifetime of the Sa⁻ '/EG⁺⁺ charge-separated state in **EG-3** is, however, significantly shorter than in **EG-2**, which indicates that there is a kinetic process competing with charge recombination. We calculate the rate of hole transfer time from EG⁺⁺ to Sd⁺⁺, τ_{Sd} (=1/ k_{Sd}), from eq. 1, which for **EG-3** gives τ_{Sd} = 13.9 ns. This rate would suggest as much as 40% (k_{Sd}/k_{EG+}) of the hole population can transfer to Sd. However, the 5.8 ns decay observed in the nsTA spectra indicates that the kinetics of charge recombination *from the Sd trap* are inverted, preventing any population from building up to a detectable level during the fsTA experiment, leading to the spectra observed in Figure 3b.

The situation is similar in **G-3** where the Sa^{-*}/Sd⁺⁺ radical pair is observed at long times, as seen in Figure 4a, although the observed yield is quite low. Kinetic analysis gives $\tau_{Sd} = 16.4$ ns, but a maximum yield of only 8%. This low yield is independently corroborated by determining the yield directly from the spectra at a specific time. We calculate the yield of hole trapping on Sd, Φ_{Sd} , by obtaining the ratio of the ^{1*}Sa absorption amplitude at 500 fs and the area of the absorption at 7 ns delay and comparing that ratio to a known standard:¹⁷

$$\Phi_{Sd}(t) = \left(\frac{\Delta A_{Sd^{**}}(t)}{\Delta A_{*Sa}(t \approx 0)}\right)_{x} \div \left(\frac{\Delta A_{Sd^{**}}(t)}{\Delta A_{*Sa}(t \approx 0)}\right)_{ref} \times \eta_{Sa} \times \Phi_{ref}$$
(2)

The co-excitation of the **EG** chromophore and the overlapping absorptions of ^{1*}EG and ^{1*}Sa requires a correction for the fraction of absorbed photons that lead to the formation of ^{1*}Sa (η_{Sa}). We take **G-4** as the reference with $\Phi_{ref} = 26\%$ when corrected for the fraction of **Sa** absorbing at 350 nm.⁴ Further details are provided in the SI, section 3. This approach provides a *time-dependent* quantum yield of charge trapping, as the ratio is based on the area at a given time delay; Table 1 reports the yields calculated at 5 and 7 ns using the fsTA measurement, and 10 and 40 ns, based on the nsTA data. Ideally, the yield would be reported when the trapping step is completed and the spectral intensity is effectively constant. However, as the trapping rate is on the same order as the charge recombination (τ_{EG+} and $\tau_{Sd} \sim 3$ ns, and $\tau_{CRI} \sim 6$ ns), the spectrum continues to decay even as the ratio becomes constant. From this spectral analysis, the yield of charge separation is ~5% for **G-3** toward the end of the fsTA experiment and then decreases in keeping with the kinetic model. The low yield is also consistent with the SAS of the terminal state, which shows band inversion indicative of trapping at Sd (Figure 4a).

In contrast to **EG-3**, the fsTA data for **EG-4** show 533 nm absorption within the first few ns, characteristic of a high yield of Sd⁺⁺. The strong amplitude of Sd⁺⁺ in **EG-4** suggests more efficient hole transport through a GG-block than the AA-block,⁴ and indicates that the hole is not trapped in the purine tract when in the presence of a deep hole site. In the model, the trapping step is combined with injection into the G₂ block. This is supported by the concomitant loss of the 460 nm EG⁺⁺ absorption with the appearance of the 533 nm Sd⁺⁺ band and the lack of a strong apparent G₂⁺⁺ absorption.²⁰ Importantly, the characteristic absorption of the EG⁺⁺ species is observed prior to hole trapping by Sd, signifying that *EG can serve as an optical tag of the hole*

Journal of the American Chemical Society

location during transport. It is also possible, given the similar energetics of EG and G, that the hole is able to delocalize across GG and move as a polaron, such that there is only one observable population state. The electronic broadening associated with such polaron formation may also be suppressing the intensity of the 460 nm band in **EG-4** relative to **EG-3**.²⁰

The calculated yield of Sd⁺⁺ for EG-4 using eq. 2 at 5 ns is $\Phi_{Sd} = 16\%$, compared to $\Phi_{CS} = 26\%$ for G-4.⁴ From eq. 1, we calculate hole trapping times of $\tau_{Sd} = 4.4$ ns and 2.2 ns for EG-4 and G-4, respectively, and hence the kinetic model predicts similar yields of Sd⁺⁺ around 40% for EG-4 and G-4. The discrepancy is likely a result of comparison to a time-dependent quantum yield, as competitive charge recombination reduces the observable yield in the spectrum by depleting the Sd⁺⁺ population at a given observation time. In EG-4, the slower trapping rate is offset, in part, by the slower charge recombination of the Sa⁻⁺/EG⁺⁺ state, making the hole transfer to Sd more competitive. However, when the trapping rate is slowed substantially, as in the A₂ block case of EG-3, the kinetics become inverted, and the population of the trap state does not accumulate to measurable levels.

Despite the different oxidation potentials of EG and G and the slowing of overall charge transport, the observation of charge trapping at Sd⁺⁺ in reasonable yield for EG-4 demonstrates the utility of EG as a hole conduit. Comparison of the τ_{Sd} times for EG-4 and G-4 shows that hole transport from EG⁺⁺ is slower by a factor of two, which manifests in a reduction of the trapping yield, though by less than a factor of two due to slowed charge recombination. The resultant yields are still moderate and easily detectable for optimized sequences, allowing for EG to be deployed in more complicated systems without large disruption of the dynamics. Additionally, we are able to directly observe the effect of the purine sequence on hole transport. In EG-3, the hole effectively stops at EG, as the inverted kinetics prevent meaningful population

of the trap state from developing. However, if the sequence is designed properly, as in **EG-4**, the hole can easily be transported through the tract and arrive at Sd in reasonable yield, while its location is easily tracked and timed by the spectral tag on EG. We note that we also examined a system similar to **EG-4** with an A_3 -block in place of A_2 and observed no significant differences (data not shown), which suggests the behavior we have observed can be easily extended to larger diblock systems.

CONCLUSIONS

We have demonstrated the use of a phenylethynlguanine nucleobase to track the location of positive charge during photoinduced charge transport through DNA hairpins by means of transient absorption and femtosecond stimulated Raman spectroscopies. Following oxidation of EG, hole transport to Sd⁺⁺ through multiple Gs was observed, demonstrating the efficacy of EG to act as hole conduit in a G-tract. The addition of the phenylethynyl group appears to only slightly alter the oxidation potential of guanine, resulting in slowed hole transport through the poly(purine) sequence by a factor of two, and subsequently ~30% lower trapping yields. However, the changes in the energy landscape are not so drastic as to severely alter the general hole transport behavior observed in transport through purine block sequences with unsubstituted guanine. We also examined the formation of Sa⁻⁺ by FSRS, which directly demonstrates reversible hole injection between ^{1*}Sa and the neighboring A-block.

Direct observation of EG as an intermediate hole acceptor demonstrates the utility of EG as a site-specific probe of hole migration and charge separation. Its unique electronic and vibrational spectral tags open the door to study hole migration and charge separation processes in complex DNA architectures such as 3-⁴⁴⁻⁴⁵ and 4-way junctions,⁴⁶ or G-quadruplexes.⁴⁷ Furthermore, the

use of EG to serve as a hole donor to both G and Sd demonstrates its ability to provide insight into hole transport *through* a G-tract. Future work to determine the hole mobility in mixed G(EG) sequences will seek to provide direct information on the hopping rates through G-tracts.⁵ Optical detection of G^{+*} is complicated by its weak absorption that overlaps with features from other typical chromophores including the stilbene radical ions. Additionally, when the hole encounters a tract of Gs, it has been shown theoretically to delocalize across two or three Gs and behave as a polaron,⁴⁰ which broadens and weakens the signal, making it even more challenging to observe.²⁰ Even if G_n^{+*} is observed, its location within a larger G-tract cannot be easily determined. However, placement of EG at specific locations within larger runs of Gs would avoid this problem and assist in directly locating the hole during transit, with minimal alteration of the dynamics, and offer a promising route to exploring hole transport dynamics with site specificity.

ASSOCIATED CONTENT

Supporting Information

Conjugate mass spectral data, thermal dissociation curves, electrochemical data, femtosecond/nanosecond transient absorption spectra, femtosecond stimulated Raman spectra, and data analysis, computational details, and Raman mode assignments. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

fdl@northwestern.edu

ryan.young@northwestern.edu

m-wasielewski@northwestern.edu

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENTS

This research was funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Awards DE-FG02-96ER14604 (F.D.L.) and DE-FG02-99ER14999 (M.R.W).

REFERENCES

- (1) Lewis, F. D., Isr. J. Chem. 2013, 53, 350-365.
- (2) Kawai, K.; Majima, T., Acc. Chem. Res. 2013, 46, 2616-2625.
- (3) Fujitsuka, M.; Majima, T., Chem. Sci. 2017, 8, 1752-1762.

(4) Vura-Weis, J.; Wasielewski, M. R.; Thazhathveetil, A. K.; Lewis, F. D., J. Am. Chem. Soc. 2009, 131, 9722-9727.

- (5) Conron, S. M. M.; Thazhathveetil, A. K.; Wasielewski, M. R.; Burin, A. L.; Lewis, F. D., *J. Am. Chem. Soc.* **2010**, *132*, 14388-14390.
- (6) Kawai, K.; Kodera, H.; Osakada, Y.; Majima, T., Nat Chem 2009, 1, 156-159.
- (7) Kawai, K.; Hayashi, M.; Majima, T., J. Am. Chem. Soc. 2012, 134, 9406-9409.

2
-
3
4
4
5
5
6
-
1
Q
0
9
10
4.4
11
12
12
13
14
15
10
16
17
10
10
19
20
24
21
22
~~
23
~
24
25
25
26
20
27
00
28
20
29
30
00
31
22
32
33
55
34
0.5
35
26
30
37
57
38
20
39
10
40
41
42
12
40
44
45
16
40
47
т <i>і</i>
48
40
49
50
51
E 0
ວ∠
52
55
54
55
56
00
57
58
50
59
60

(8) Kawai, K.; Majima, T., Increasing the Hole Transfer Rate Through DNA by Chemical Modification. In *Chemical Science of* π -*Electron Systems*, Akasaka, T.; Osuka, A.; Fukuzumi, S.; Kandori, H.; Aso, Y., Eds. Springer Japan: 2015; pp 751-760.

- (9) Thazhathveetil, A. K.; Vura-Weis, J.; Trifonov, A.; Wasielewski, M. R.; Lewis, F. D., *J. Am. Chem. Soc.* **2012**, *134*, 16434-16440.
- (10) Steenken, S.; Jovanovic, S. V., J. Am. Chem. Soc. 1997, 119, 617-618.
- (11) Lewis, F. D.; Kalgutkar, R. S.; Wu, Y.; Liu, X.; Liu, J.; Hayes, R. T.; Miller, S. E.;
 Wasielewski, M. R., J. Am. Chem. Soc. 2000, 122, 12346-12351.
- (12) Geacintov, N. E.; Solntsev, K.; Johnson, L. W.; Chen, J.; Kolbanovskiy, A. D.; Liu, T.; Shafirovich, V. Y., *J. Phys. Org. Chem.* **1998**, *11*, 561-565.
- (13) Yun, B. H.; Lee, Y. A.; Kim, S. K.; Kuzmin, V.; Kolbanovskiy, A.; Dedon, P. C.; Geacintov, N. E.; Shafirovich, V., *J. Am. Chem. Soc.* **2007**, *129*, 9321-9332.
- (14) Genereux, J. C.; Barton, J. K., Chem. Rev. 2010, 110, 1642-1662.
- (15) Schuster, G. B., Acc. Chem. Res. 2000, 33, 253-260.
- (16) Giese, B., Acc. Chem. Res. 2000, 33, 631-636.
- (17) Candeias, L. P.; Steenken, S., J. Am. Chem. Soc. 1989, 111, 1094-1099.
- (18) Wu, L.; Liu, K.; Jie, J.; Song, D.; Su, H., J. Am. Chem. Soc. 2015, 137, 259-266.
- (19) Kobayashi, K.; Yamagami, R.; Tagawa, S., J. Phys. Chem. B 2008, 112, 10752-10757.
- (20) Harris, M. A.; Mishra, A. K.; Young, R. M.; Brown, K. E.; Wasielewski, M. R.; Lewis, F. D., J. Am. Chem. Soc. 2016, 138, 5491-5494.
- (21) Lewis, F. D.; Wu, T. F.; Liu, X. Y.; Letsinger, R. L.; Greenfield, S. R.; Miller, S. E.; Wasielewski, M. R., *J. Am. Chem. Soc.* **2000**, *122*, 2889-2902.

(22) Wu, Y.-L.; Brown, K. E.; Gardner, D. M.; Dyar, S. M.; Wasielewski, M. R., *J. Am. Chem. Soc.* 2015, *137*, 3981-3990.

- (23) Lewis, F. D.; Zhu, H.; Daublain, P.; Fiebig, T.; Raytchev, M.; Wang, Q.; Shafirovich, V., J.
- Am. Chem. Soc. 2006, 128, 791-800.
- (24) Lewis, F. D.; Wu, Y.; Zhang, L.; Zuo, X.; Hayes, R. T.; Wasielewski, M. R., *J. Am. Chem. Soc.* 2004, *126*, 8206-8215.
- (25) Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M., J. Phys. Chem. 1996, 100, 5541-5553.
- (26) El-Yazbi, A. F.; Palech, A.; Loppnow, G. R., J. Phys. Chem. A 2011, 115, 10445-10451.
- (27) Santoro, F.; Improta, R.; Fahleson, T.; Kauczor, J.; Norman, P.; Coriani, S., *J. Phys. Chem. Lett.* **2014**, *5*, 1806-1811.
- (28) Lewis, F. D.; Zhang, L.; Liu, X.; Zuo, X.; Tiede, D. M.; Long, H.; Schatz, G. C., J. Am. Chem. Soc. 2005, 127, 14445-14453.
- (29) Johnson, W. C., CD of Nucelic Acids. In *Circular Dichroism, Principles and Applications*, Berova, N.; Nakanishi, K.; Woody, R. W., Eds. Wiley-VCH: New York, 2000; pp 741-768.
- (30) Kypr, J.; Kejnovská, I.; Renčiuk, D.; Vorlíčková, M., Nucleic Acids Res. 2009, 37, 17131725.
- (31) Trantírek, L.; Štefl, R.; Vorlíčková, M.; Koča, J.; Sklenářář, V. r.; Kypr, J., *J. Mol. Biol.* **2000**, *297*, 907-922.
- (32) Young, R. M.; Singh, A. P. N.; K. Thazhathveetil, A.; Cho, V. Y.; Zhang, Y.; Renaud, N.;
 Grozema, F. C.; Beratan, D. N.; Ratner, M. A.; Schatz, G. C.; Berlin, Y. A.; Lewis, F. D.;
 Wasielewski, M. R., *J. Am. Chem. Soc.* 2015, *137*, 5113-5122.
- (33) Lewis, F. D.; Wu, T.; Liu, X.; Letsinger, R. L.; Greenfield, S. R.; Miller, S. E.; Wasielewski, M. R., J. Am. Chem. Soc. 2000, 122, 2889-2902.

(34) We note that a true species-associated spectrum by definition cannot represent a mixture of states, but for simplicity our model neglects the short-lived populations of the co-excited species. In this way, the SAS here (at least at early times) may be better referred to as decay-associated spectra where the evolution is described by the solutions to the kinetic model defined in the text. However, after the first ~100 ps the contribution from the other short-lived states is minimal and the spectra are well-described as species-associated.

(35) Singh, A. P. N.; Harris, M. A.; Young, R. M.; Miller, S. A.; Wasielewski, M. R.; Lewis, F. D., *Faraday Discuss.* 2015, *185*, 105-120.

(36) Sumitani, M.; Yoshihara, K.; Nagakura, S., Bull. Chem. Soc. Jpn. 1978, 51, 2503-2507.

(37) Lewis, F. D.; Liu, X.; Wu, Y.; Miller, S. E.; Wasielewski, M. R.; Letsinger, R. L.; Sanishvili, R.; Joachimiak, A.; Tereshko, V.; Egli, M., *J. Am. Chem. Soc.* **1999**, *121*, 9905-9906.

(38) Middleton, C. T.; Harpe, K. d. L.; Su, C.; Law, Y. K.; Crespo-Hernández, C. E.; Kohler, B., *Annu. Rev. Phys. Chem.* **2009**, *60*, 217-239.

(39) Kochman, M. A.; Pola, M.; Miller, R. J. D., J. Phys. Chem. A 2016, 120, 6200-6215.

(40) Renaud, N.; Berlin, Y. A.; Lewis, F. D.; Ratner, M. A., *J. Am. Chem. Soc.* **2013**, *135*, 3953-3963.

(41) Renaud, N.; Berlin, Y. A.; Ratner, M. A., Proc. Natl. Acad. Sci. USA 2013, 110, 14867-14871.

(42) Renaud, N.; Harris, M. A.; Singh, A. P. N.; Berlin, Y. A.; Ratner, M. A.; Wasielewski, M. R.; Lewis, F. D.; Grozema, F. C., *Nat Chem* 2016, *8*, 1015-1021.

(43) Lewis, F. D.; Liu, J.; Zuo, X.; Hayes, R. T.; Wasielewski, M. R., J. Am. Chem. Soc. 2003, 125, 4850-4861.

- (44) Sabir, T.; Toulmin, A.; Ma, L.; Jones, A. C.; McGlynn, P.; Schröder, G. F.; Magennis, S.
 - W., J. Am. Chem. Soc. 2012, 134, 6280-6285.
 - (45) Santhosh, U.; Schuster, G. B., Nucleic Acids Res. 2003, 31, 5692-5699.
- (46) Lake, A.; Shang, S.; Kolpashchikov, D. M., Angew. Chem. Int. Ed. 2010, 49, 4459-4462.
- (47) Thazhathveetil, A. K.; Harris, M. A.; Young, R. M.; Wasielewski, M. R.; Lewis, F. D., J.

Am. Chem. Soc. 2017, 139, 1730-1733.

TOC Graphic

