SYNTHESIS AND INVESTIGATION OF SOME IMIDAZOLE DERIVATIVES. VII. ESTERS AND AMIDES OF NITROIMIDAZOLECARBOXYLIC ACIDS

```
R. N. Gireva, G. A. Aleshina,
L. A. Reznichenko, and P. M. Kochergin
```

UDC 615.31:547.781.1

As a continuation of our research in the imidazole-derivative field, we have prepared a series of previously undescribed esters and amides of nitroimidazolecarboxylic acids which may present interest as potential biologically active substances or intermediates for their synthesis.

For the most part, unsubstituted amides of 1-alkyl- and 1.2-dialkyl-4-nitroimidazole-5-carboxylic acids have been described in the literature [1-6]; substituted amides of these acids are represented by a very small number of compounds [7, 8]. Esters of these acids have been studied to a still smaller degree [7].

The nitroimidazolecarboxylic acids needed for the synthesis of the amides and esters were prepared by acid hydrolysis of nitrocyanoimidazoles in the presence of sodium nitrite, according to the procedure of [7].

Unsubstituted amides were obtained upon incomplete hydrolysis of the nitriles in the absence of ni-trite [1, 3, 5].

Synthesis of the starting nitrocyanoimidazoles was effected by cyanation [1] of nitrochloro (or bromo) imidazoles [9], whose halogen atom is easily replaced by a CN group upon heating with alkali metal cyanides in the presence of iodides of the same metals.

The nitrochloroimidazoles were prepared by the Wallach reaction [10] from dialkyloxamides, and with subsequent nitration of the alkyl (or dialkyl) chloroimidazoles formed [9].

$$(CONHCH2R)_2 \xrightarrow{2PCl_5} R \xrightarrow{N} Cl \xrightarrow{HNO_3} R \xrightarrow{N} Cl \xrightarrow{HNO_2} CH_2R \xrightarrow{N} Cl \xrightarrow{HNO_2} CH_2R$$

1,2-Dimethyl-4-nitro-5-bromoimidazoles were synthesized by alkylation of 2-methyl-4(5)-nitroimi-

Novokuznets Scientific-Research Institute of Pharmaceutical Chemistry. S. Ordzhonikidze All-Union Scientific-Research Institute of Pharmaceutical Chemistry, Moscow. Translated from Khimiko-Farmatsevticheskii Zhurnal, No. 10, pp. 24-29, October, 1974. Original article submitted March 29, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15,00.

TABLE 1. 4-Nitroimidazole-5-carboxylic Acids, their Amides, and Esters

R N COR2

n 1%)	z	30,43 19,85 18,06 22.7	16,47 16,47 14,84 28,28	23,52	$\begin{array}{c} 26,41\\ 24,77\\ 23,33\\ 23,33\\ 22,91\\ 22,91\end{array}$	23,53	25,41	23,33	22,22	
ated (i	н	4,30 7,80 3,38 3,38	6,66 6,66 7,42 5,05	5,91	5,66 6,19 6,56 6,66 6,54	5,88	5,08	5,0	6,35	
Calcul	ပ	39,13 55,31 58,06 38,91	51,76 51,76 55,12 42,42	50,43	$\begin{array}{c} 45,28\\ 47,78\\ 50,0\\ 50,0\\ 43,27\\ \end{array}$	50,42	39,2	45,0	52,38	
	Empirícal formula	C ₆ H ₈ N ₄ O ₃ C ₁₃ H ₂₂ N ₄ O ₃ C ₁₅ H ₂₂ N ₄ O ₃ C ₁₅ H ₂₀ N ₄ O ₃	$C_{11}^{0}H_1^{+}N_3^{+}O_4^{-}$ $C_{11}^{0}H_1^{+}N_3^{+}O_4^{-}$ $C_{11}^{0}H_2^{-}N_3^{-}O_4^{-}$ $C_7^{+}H_0^{-}N_4^{-}O_3^{-}$	$C_{10}H_{14}N_{4}O_{3}$	$\begin{array}{c} C_6H_{12}N_4O_3\\ C_6H_{14}N_4O_3\\ C_9H_{14}N_4O_3\\ C_{10}H_{16}N_4O_3\\ C_{10}H_{16}N_4O_3\\ C_{11}H_{10}N_5O_3\cdot HCl^2\\ C_{11}H_{10}N_5O_3\cdot HCl^2 \end{array}$	C ₁₀ H ₁₄ N ₄ O ₃	$C_9H_{1,3}N_5O_3\cdot HCl^3$	C ₉ H ₁₂ N ₄ O ₄	C ₁₁ H ₁₆ N ₄ O ₃	
(o)	N	30,29 20,31 18,03 29,71	16,56 16,12 14,71 27,76	23,06	26,57 24,84 22,85 23,44 22,88	23,17	25,25	23,32	22,17	
d (in	Н	4,07 7,87 8,14 4,08	6,71 6,46 7,28 4,9	5,80	5,73 6,28 6,66 6,82	5,97	5,25	5,03	6,31	
Four	υ	39,04 55,24 58,0	51,65 51,64 54,39 42,33	50,53	$\begin{array}{c} 45,17\\ 47,42\\ 49,95\\ 49,94\\ 43,50\end{array}$	50,35	38,98	45,04	52,25	
Mp(indeg) ¹	· ·	$\begin{array}{c} 239-249\\ 141-2\\ 129-130\\ 144-5\\ 144-5\end{array}$	113-5 113-5 138-9 112-3 223,5-4	244—6	178-994-592-92,589-90198-9	125,5—6,5	303—5	162—3	182,5-3,5	,
Yield	(in %)	53,0 78,0 93,9 70.0	61,4 52,0 80,8	87,9	80,2 76,5 71,8 62,0 52,4	60,9	97,3	54,8	58,1	
	R ^z	NH ^a NH ^a NH ^a	OH OH OH NHC ₃ H, iso	-HN	NHC ₃ H,- iso NHC ₄ H ₉ - iso NHC ₆ H ₁₁ n NHC ₆ H ₁₁ iso NHC ₆ H ₁₁ iso		HN	Û	HIN	
	R1	CH3 C4H9- Iso C5H11- n	C ₃ H ₇ - n C ₃ H ₇ - n C ₄ H ₉ - n H	Н	<u> </u>	Н	Н	Н	Н	
	æ	CH3 C5H11- iso C6H13- n	C4H ₉ - n C4H ₉ - iso C4H ₁₁ n C6H ₁₁ n H	H	CH, CH, CH, CH, CH,	CH3	CH ₃	CH ₃	CH ₃	
	Compound	ΗΗΣ		X	XX XX XX XX XX	IVX	ΙΙΛΧ	IIIVX	XIX	

606

(:	-		Yield	21 1 2 2 2 2 2 2	Fou	nd(in '	(oh				
Compound	X	R 4	R [±]	(in %)	Mp(Indeg)	0	H	z	Empirical formula	υ	H	
XX XXI	CH3 CH3	H	NHCH ₂ C ₆ H ₅ NHC ₆ H ₄ NO ₂ - n	80,8 67,5	139-140 293-4	55,35 45,04	4,68 3,24	21,49 23,83	C ₁₂ H ₁₂ N ₄ O ₃ C ₁₁ H ₉ N ₆ O ₅	55,38 45,39	4,61 3,09	21,55 24,05
	CH, CH,	CH, CH,	NHC ₃ H ₇ - isq NHC ₄ H ₆ H ₁ NH(CH ₂) ₂ N(C ₂ H ₅) ₂	79,5 76,5 75,7	180 142 189—190	47,97 49,7 45,37	6,21 6,7 6,98	24,76 23,67 21,74	C ₉ H ₁ 4N 4O3 C ₁₀ H ₁₆ N 4O3 C ₁₂ H ₂₁ N5O3 · HCl ⁴	47,78 50,0 45,07	6,19 6,88 6,88	24,78 23,33 21,9
XXV	CH ₃	CH ₃	ç	63,0	1623	47,11	5,57	22,39	$C_{10}H_{14}N_{4}O_{4}$	47,24	5,51	22,47
XIXX IIIXXX IIXXX	C ₃ H ₇ C ₄ H ₉ -n C ₄ H ₉ -n C ₄ H ₉ -n	C ₂ H ₅ C ₃ H ₇ -n C ₃ H ₇ -n C ₃ H ₇ -n	NHC ₄ H ₉ -n NHC ₃ H ₇ -150 NHC ₄ H ₉ -1 NH(CH ₂) ₂ N(C ₂ H ₅) ₂	76,4 84,0 90,2 66,7	· 96—7 112 73—4 143—4	55,14 56,57 57,94 52,34	7,50 8,12 8,50 8,48	19,76 18,89 18,32 18,01	C ₁₃ H ₂₂ N ₄ O ₈ C ₁₄ H ₂₄ N ₄ O ₈ C ₁₇ H ₃₆ N ₄ O ₃ C ₁₇ H ₃₁ N ₅ O ₃ .HCl ⁵	55,32 56,75 58,06 52,37	7,80 8,18 8,39 8,21	19,86 18,92 18,01 17,97
XXX	С4Н9-п	C ₃ H ₇ -n	Ç	69,4	77,58,5	55,31	7,35	17,24	$C_{15}H_2_4N_4O_4$	55,55	7,40	17,28
XXXI	C4H9-n	C ₃ H ₇ -n		73,7	260—1	49,85	7,27	19,46	C ₁₅ H ₂₅ N ₅ O ₃ · HCl ⁶	50,07	7,28	19,47
ИХХХ	C4H9-n	C ₃ H ₇ -n	\sum_{z}	79,4	120—1	60,75	8,24	16,57	C17H36N4O3	60,71	8,33	16,66
UITX IITX IIXXXX IXXXXX IXXXX IXXXX IXXXX IXXXX IXXXX IXXXX IXXXX IXXXXXX	С. 4 С. 4 С. 4 С. 4 4 6 С. 4 4 6 7 6 3 4 7 6 7 6 7 6 7 8 7 6 7 8 7 8 7 8 7 8 7 8	Санти Санти Санти Санти ССНа ССНа ССНа ССНа ССНа ССНа ССНа ССН	NHC _e H ₅ NHC _e H ₄ NO ₂ - n NHC _e H ₄ NN- NHC _e H ₄ NHCOCH ₃ - n OCC ₁ H ₅ OCC ₁ H ₅ OCC ₁ H ₅ OCC ₁ H ₅ OCC ¹ H	68,8 69,3 70,3 82,2 82,2 82,2 97,5 97,5	142-3 217-8 697-8 64-5 64-5 64-5 011 ⁷ 011 ⁷ 011 ⁷	$\begin{bmatrix} 61,10\\ 554,29\\ 554,29\\ 45,04\\ 45,04\\ 15,10\\ \hline \end{bmatrix}$	6,67 5,62 5,62 5,31 5,31 6,40	17,05 18,47 18,41 18,41 18,98 18,98 17,4	$\begin{array}{c} C_1 + H_{28} N_{10} C_3 \\ C_1 + H_{21} N_{20} C_3 \\ C_3 + H_{21} N_{30} C_4 \\ C_3 + H_{10} N_{30} C_4 \\ C_3 + H_{11} N_{30} C_4 \\ C_3 + H_{11} N_{30} C_4 \\ C_3 + H_{10} N_{30} C_4 \end{array}$	61,08 54,4 58,91 45,07 45,07 49,8	6,23 6,23 6,23 6,23 6,23 6,23	16,97 18,666 18,09 18,09 18,09 19,71 19,71

607

.

TABLE 1,	(continu	ed)										
				Yield	(· · · · · · · · · · · · · · · · · · ·	Fol	ui) but	do)		Calc	ulated (in %)
Compound	X		Rª	(in %)	Mp (in deg)"	υ	н	z	Empirical formula	U	H	z
XTVI XLIV XLIV	C4H9- iso C4H9- iso C6H11-n	$\begin{bmatrix} C_3H_7 - iso \\ C_3H_7 - iso \\ C_4H_9 - n \end{bmatrix}$	ocH ₃ oc ₃ H ₅ ocH ₃	83,4 44,0 84,7	6870 389 Oil ⁷	53,44 55,03	7,27 7,52	15,66 14,3	C ₁₂ H ₁₉ N ₃ O ₄ C ₁₃ H ₂₁ N ₃ O ₄	53,53 55,12 -	7,02 7,42 	15,61 14,82
XLVII	C ₅ H ₁₁ -n	C4H9-n	OC_H	93,5	0i1 ⁷		1	J		1	1	1
These sub	stances m	elt with de	ecomposition. For a	ualys	is the con	unodu	ds we	ere pi	rrified by cr ys talliz	zation	1-H	, XXIV,
XXV, XXX	, XXXIII,	and XXXI	V, from alcohol; VI,	XIX,	XXVI, XX	E.	IXXX	XX	KV-XXXVIII, XL, X	TIV,	and X	LV,
from aque	ous alcoh	[Λ;(I:1); V]	II, from benzene; VI	II, fro	m a mixtu	ure of	f benz	ene a	nd petroleum ether	: (1:1)	; IX,	х,
XII, XIV,	XVI, XX, 1	XXII, and	XXIII, from water; X	III an	d XXVIII,	from	aquec	ous ac	setone (1:1); XV and	I X VII	I, fro	m ab-
solute alc	ohol; XXI,	from a m	ixture of dimethylfo:	rmam	ide and w	ater ((1:1);	XXXX	, from a mixture o	f alco	hol ar	id ether

(1:1). Compound X was isolated with dilute hydrochloric acid from a dilute sodium carbonate solution; XVII and

XXXI were isolated from the reaction mixture in the form of hydrochlorides and were washed with alcohol.

Cl, 11.62. Cl, 12.88. Cl, 11.11. Cl, 9.11.

%

Calculated, Calcul

Cl, 11.69.

%

²Found,

ю К

³Found.

9.87

ت ت%

Does not distill at 250° (3 mm).

Cl, 9.19. Cl, 9.62.

> %: %

ю.

Cl, 12.78. Cl, 11.48.

> ^fFound, ⁵Found, ⁶Found,

Calculated. Calculated: dazole [11] with dimethyl sulfate [12] and subsequent bromination in position 5 of the imidazole ring [11].

Unsubstituted 4(5) -nitroimidazole-5(4) -carboxlic acid was synthesized by nitration and oxidation of 4(5) -hydroxymethylimidazole [13].

The nitrocyanoimidazoles, nitroimidazolecarboxamides, and nitroimidazolecarboxylic acids not described in the literature were characterized by their melting points and elemental analyses (see Table 1).

The nitroimidazolecarboxylic acids were converted to the corresponding acid chlorides by the action of thionyl chloride. Substituted amides of the nitroimidazolecarboxylic acids were obtained by heating the acid chlorides with amines in benzene in the presence of triethylamine or an excess of the amine being acylated. The piperazides and diethylaminoethylamides were obtained in the form of hydrochloride and appropriate amine.

Esters of the nitroimidazolecarboxylic acids were prepared by the reaction of the acid chlorides with alcohols. Some nitroesters (XXXIX, XLI-XLIII, XLVII), which were undistillable oils (see Table 1), were later converted into aminoesters without purification.

In the IR spectra of the nitro derivatives, taken in vaseline oil on a UR-10 spectrometer, absorption bands were detected in the 1300-1350 cm⁻¹ region, which corresponds to the symmetrical stretching vibration of the NO₂ group. There were also characteristic absorption bands at 2240 cm⁻¹ for nitriles, 1710-1720 cm⁻¹ for acids, 1725 cm⁻¹ for esters, 1675-1685 cm⁻¹ for primary amides, and 1645-1678 cm⁻¹ for secondary amides.

Biological tests of the preparations (IX, XI, XIII-XXVII, XXIX-XXXI, and XXXIII-XXXV) for antitumor action, performed in the cancer chemotherapy laboratory of the Novokuznets Scientific-Research Pharmaceutical Chemistry Institute under the direction of L. F. Mal'tseva, showed that individual representatives (XVIII, XXV-XXVII, and XXX) display weak activity (a 32-60% retardation); the remaining substances, however, do not affect the growth of experimental tumors.

Pharmacological study of the compounds synthesized (IX, XI, XIII-XIX, XXV-XXVII, and XXIX-XXXI) was performed under the direction of V. M. Kurilenko in the laboratory of pharmacology and showed that these preparations exert some depressive action on the central nervous system, expressed in a reduction in body temperature, breakdown in motor coordination, and an increase in drug-induced sleep.

EXPERIMENTAL

The starting materials were prepared by the following literature procedures: 1,2-dimethyl-4-nitro-5-cyanoimidazole (I), [1]; 1,2-dialkyl-4-nitroimidazole-5-carboxamides (II-IV), [5]; and 1,2-dialkyl-4nitroimidazole-5-carboxylic acids (V-VIII), [7].

<u>Acid Chlorides of Nitroimidazolecarboxylic Acids</u>. The nitroimidazolecarboxylic acid was boiled with a 9-11-fold excess of thionyl chloride until a homogeneous solution was formed (from 1 to 5 h). The excess thionyl chloride was distilled off under vacuum; dry benzene was added to the residue in an amount equal in volume to the thionyl chloride distilled off, and the benzene was distilled off. This operation was repeated two or three times. The acid chlorides obtained were used for synthesis of amides and esters without further purification.

In the preparation of 4(5)-nitroimidazole-5(4)-carbonyl chloride a solution in the thionyl chloride was not formed; therefore heating was carried out, with stirring, for 7 to 8 h. The acid chloride was filtered off and washed with benzene and petroleum ether.

Substituted Amides of Nitroimidazole carboxylic Acids (IX - XXXV). A. To asolution of the nitro acid chloride in dry benzene (in an amount of 50 ml per 0.01 mole of starting acid) was added, with stirring and cooling in an ice bath, a two to three-fold amount of the amine to be acylated. The reaction mixture was stirred for 1 or 2 h without heating, and was allowed to stand overnight. The benzene was evaporated, and the crystalline residue was washed with cold dilute hydrochloric acid solution, water sodium carbonate solution, and water. It was dried and recrystallized from an appropriate solvent (see Tabel 1). Compounds XI-XIV, XVI, XIX, XX, XXII, XXVI-XXVIII, XXXII, and XXXIII were prepared by this method. B. To a solution or suspension (for 4(5)-nitroimidazole-5(4)-carboxylic acid) of equimolar amounts of the nitro acid chloride and the amine in dry benzene (50 ml of benzene 0.01 mole of acid), with cooling and stirring, triethylamine was slowly added in an amount of 1.2-1.3 moles per mole of acid. Further operations were as in method A. Compounds IX, X, XVIII, XXII, XXV, XXX, XXXIV, and XXXV were prepared by this method.

<u>Nitroimidazolecarboxylic Acid Piperazide Hydrochlorides (XVII, XXXI)</u>. Piperazine (1.78 g) containing 4% water (1.72 g, 0.02 mole calculated as 100% piperazine) was boiled with 50 ml of toluene which had been dried over metallic sodium, using a Dean and Stark water separator, until 0.07 ml of water had distilled. To the solution, with cooling and stirring, was added, dropwise, a solution of the nitro acid chloride, prepared from 0.02 mole of acid, in 40 ml of toluene. The reaction mixture was stirred 2 or 3 h longer and was allowed to stand overnight. The precipitate was filtered off, washed with hot water and with hot alcohol, and was dried in air. The piperazide hydrochlorides do not dissolve in water or ordinary organic solvents, and are soluble in dimethylformamide.

Nitroimidazole carboxylic Acid Diethylaminoethylamide Hydrochlorides (XV, XIV, and XXIX). To a solution of the acid chloride in dry benzene, with cooling and stirring, was added an equimolecular amount of diethylaminoethylamine in benzene (3.6 ml of benzene/0.01 mole of amine). The suspension formed was stirred without heating for 1 or 2 h and allowed to stand overnight. The precipitate was filtered off and crystallized from absolute alcohol with charcoal.

Esters of nitroimidazolecarboxylic acids (XXXVI-XLVII). A mixture of the acid chloride prepared from 0.02 mole of the corresponding nitroimidazolecarboxylic acid with 6 ml (0.1 mole) of absolute ethanol or 4 ml (0.1 mole) of methanol was boiled for 10 to 15 min, and the mixture was poured into cold water. The nitroesters separated in the form of a precipitate or oil. The precipitate was filtered off, dried, and crystallized from aqueous alcohol (1:1). The oil esters were extracted several times with benzene or ether. The extract was washed with a sodium carbonate solution and water, and it was dried with anhydrous magnesium or sodium sulfate. The dried solution was filtered, and the solvent was distilled off from the filtrate. The undistillable oil remaining was used for hydrogenation.

LITERATURE CITED

- 1. J. Sarasin and E. Wegman, Helv. Chim. Acta, 7, 713 (1924).
- 2. W. E. Allsebrook, J. M. Gulland, and L. F. Story, J. Chem. Soc. 232 (1942).
- 3. R. N. Prasard and R. K. Robins, J. Am. Chem. Soc., 79, 6401 (1957).
- 4. J. Baddiley, J. G. Buchanan, F. E. Hardly, et al., J. Chem. Soc., 2893 (1959).
- 5. G. E. Trout and P. R. Levy, Rec. Trav. Chim. Pays-Bas, 84, 1257 (1965).
- 6. G. E. Trout and P. R. Levy, Rec. Trav. Chim. Pays-Bas, 85, 765 (1966).

- 7. F. G. Mann and J. W. G. Porter, J. Chem. Soc., 751 (1945).
- 8. F. F. Blicke and H. C. Godt, Jr., J. Am. Chem. Soc., 76, 3653 (1954).
- 9. P. M. Kochergin, Khimiya Geterotsiklich. Soedinenii, No. 5, 761 (1965).
- 10. P. M. Kochergin, Zh. Obshch. Khim., <u>34</u>, 2735 (1964).
- 11. P. M. Kochergin, A. M. Tsyganova, and V. S. Shlikhunova, Khim.-Farm. Zh., No. 10, 22 (1968).
- 12. V. K. Bhagwat and F. L. Pyman, J. Chem. Soc., 127, 1832 (1925).
- 13. L. P. Kulev and R. N. Gireva, Zh. Prikladn. Khim., 30, 811 (1957).