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Recently calophyllum coumarins such as the calano-
lides! (1 and 2) and the inophyllums?? (8 and 4) have
attracted considerable attention as potent inhibitors of
human immune deficiency virus-1 (HIV-1) reverse tran-
scriptase (RT). Because these compounds show a mech-

calanolide A (1): R, = n-propyl, R, =OH,R; =
calanolide B (2): R, = n-propyl, R,=H,R; = OH
inophyllum B (3): R; = phenyl, R, = OH, R; =
inophyllum P (4): R, = phenyl, R, =H,R; = OH

anism of action toward the RT that is distinct from other
non-nucleoside inhibitors, they may have potential use
in the combination therapy of AIDS.* The ring system
of these compounds is built around a phloroglucinol core,
with common structural features that include a chromene
ring, a coumarin ring, and most essential for their optical
activity and perhaps their biological activity, a 2,3-
dimethylchroman-4-ol (3,4-dihydro-2H-benzo[blpyran sys-
tem) bearing methyl groups at C-2 and C-3 in a trans
relationship and a hydroxy group at C-4 (chroman
numbering). A number of syntheses of racemic calano-
lides®~7 and other calophyllum coumarins® have already
appeared in the literature. One multistep synthesis of
optically active 2,3-methylchroman-4-ones and subse-
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@ In the text a designation of “a” after a compound number
indicates the structure generated by use of (—)-(E)-crotyldiisopi-
nocampheylborane (8a).

quent diastereoselective reduction to the chroman-4-ols
has been recently reported;® however, until now the
synthesis of optically active calanolides has not been
reported. Herein we describe the synthesis of the four
stereoisomers of both calanolides A and B using a process
that generates all three contiguous chiral centers in a
most expeditious manner.

We have just reported!® a stereoselective synthesis of
the chiral 2,3-dimethylchroman-4-ol ring from a silyl-
protected salicylaldehyde. The chiral centers at C-3 and
C-4 (chroman numbering) were introduced using (Z)-
crotyldiisopinocampheylborane, and then a mercury-
assisted cyclization of the resulting o-alkenyl phenol was
implemented to give the required trans,trans-Me-Me-OH
substituted chroman (benzo[blpyran ring). In this paper
we report an application of this process to the first
enantioselective total synthesis of (+)-calanolide A (1)
and (+)-calanolide B (2) and their (—)-enantiomers, la
and 2a (the latter is also known as costatolide),’®!!
respectively.

Given the sensitive nature of the chromanol system,!?
our plan was to introduce the dimethylchromanol ring
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near the end of the synthetic sequence. This strategy
required a complex salicylaldehyde-like derivative, such
as compound 7 that can be obtained from the readily
available starting material, 5,7-dihydroxy-4-(n-propyl)-
coumarin (5).> Thus our final, concise synthetic plan was
carried out as shown in Scheme 1.

The known coumarin lactone 5 was prepared from
phloroglucinol.? On the basis of the studies reported by
Chenera et al.,® it was anticipated that a regioselective
Vilsmeier reaction!'® with compound 5 would introduce
the aldehyde function at the C-8. Treatment of 5 with
N-methylformanilide in the presence of POCI; in dichlo-
roethane at 70—75 °C gave clean, formylated product 6
in 84% yield, mp 236—237 °C. The regiochemistry of the
formylation was confirmed by NOE studies. Because the
phenolic hydroxy group at C-7 was less accessible for
substitution'* due to a presumed hydrogen-bonding
interaction, we were able to regioselectively introduce the
dimethylchromene ring using the conditions developed
by Chenera et al.5 Thus compound 8 was reacted with
3-chloro-3-methyl-1-butyne, potassium carbonate, BuNI
in DMF, and 2-butenone, followed by addition of anhy-
drous zinc chloride in diethyl ether at 60 °C for 36 h, to
afford the crucial intermediate 7 as a yellow solid, mp
116—117 °C.

For construction of the enantiomerically pure ¢trans-
2,3-dimethyl chroman-4-0l system, our initial plan was
to synthesize the erythro-f-homoallylic alcohol® [from (Z)-
crotyldiisopinocampheylborane]'® and to protect the newly
formed secondary homoallylic alcohol with a silyl group
that could easily be removed in the final step without
racemizing!? the chiral center at C-4 (chroman number-
ing). However, preliminary studies showed that a bulky
silyl group at C-4 also controls the stereochemistry of the
new chiral center (methyl group) at C-2 (obtained via
mercury-assisted cyclization and demercuration), a fact
recently demonstrated for another system.!® The result-
ing erythro-B-homoallylic alcohol was shown to give the
undesired stereochemistry at C-2. This prompted the
preparation of threo-f-methyl homoallylic alcohol 9 using
(E)-crotyldiisopinocampheylborane!® (8), thus taking ad-
vantage of the directing effect of the silyl group to provide
easy access to calanolide B. The organoborone reagent
(+)-(E)-crotyldiisopinocampheylborane (8) was prepared
according to the procedure of Brown and Bhat!® and
reacted with aldehyde 7 at —93 °C to obtain the threo-
B-methyl homoallylic alcohol 9, [a]?°; +78°, in 66% yield.
Sodium perborate (THF—H;0, room temperature)!” was
used during the workup to oxidize the boron—carbon
bond instead of the usual conditions (H,0,—3 N NaOH,
reflux). No racemization of the C-4 (chroman numbering)
chiral center was observed by either TLC or '"H NMR
spectroscopy of the product. The silylation of 9 with
TBDMSCl—pyridine—DMAP in CH;Cl; at —20 °C was
quantitative. It is probable that the phenolic hydroxy
group is less accessible than the secondary homoallylic
alcohol due to a steric interaction with the alkene proton
at C-4, leading to preponderant monosilylation. Although
some disilylated product was observed in the crude
product (TLC and 'H NMR spectroscopy), desilylation of
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the phenolic hydroxy group occurred during the purifica-
tion over silica gel, giving the monosilylated compound
10 as a syrup, [0]?%p +26.0° (¢ 1.0, acetone).

Mercury-assisted cyclization of the o-akenyl phenol!®
10 was carried out with mercury(Il) acetate!® in THF,
and the intermediate organomercurial was reduced with
an excess of sodium borohydride to obtain silyl-protected
(+)-calanolide B (11) in 83% yield, [a]?®p —41.5° (¢ 1.0,
acetone). Deprotection of the silyl group with tetrabu-
tylammonium fluoride gave (+)-calanolide B!! (2) in 86%
yield {mp 175~176 °C, [a]*°p +44.0° (¢ 1.0, acetone)}. The
'H and 3C NMR spectra were identical with those
reported for the natural product.!? The enantiomeric
ratio was determined by 'H, 3C, and '°F NMR analysis
of the a-methyl-a-(trifluoromethyl)phenylacetate (i.e., the
Mosher ester)? of the synthetic (+)-calanolide B (2) and
was found to be ~98%. A similar value, 97:3 (+):(—)-
isomers, was shown by chiral HPLC using a Regis no.
731221 Pirkle p-phenylglycine column (10 x 250 mm, 9:1
hexanes—2-propanol, 5 mL/min, UVggs; tg (+)-1 = 17.4
min, tg (—)-1 = 19.9 min).

The conversion of (+)-calanoclide B (2) into (+)-calano-
lide A (1) was efficiently carried out with a modified?
Mitsunobu reaction.?® Compound 2 was reacted with
PMe;s, diethyl azodicarboxylate (DEAD), and chloroacetic
acid, and the resulting ester was saponified with am-
monium hydroxide in MeOH, giving after purification by
gilica gel chromatography, (+)-calanolide A (1) in 81%
yield (mp 4548 °C), [a]?°p +66° (c 0.5, CHCly), {lit.!2 [a]p
+60° (¢ 0.5 CHCly)}. Again, the 'H and 13C NMR spectra
were identical with those reported for the natural
product.l2

When the process was scaled up [4.81 g (15.3 mmol) of
71 and better temperature control was achieved during
the reaction with 8, a product that was analyzed by
HPLC as >99:1 (+)-calanolide A (1) was obtained: [a]®p
= +72° (¢ 0.51, CHCly).

The entire process in Scheme 1 was repeated using (—)-
(E)-crotyldiisopinocampheylborane (8a) in order to pro-
vide (—)-calanolide B [costatolide (2a)]2 {mp 176—177
°C; [a]*°p —45° (¢ 1.0, acetone), (lit.72 [a)?%p —50.4° (¢ 1.55,
acetone)}. Finally, (—)-calanolide B was treated under
our modified Mitsunobu conditions to provide the here-
tofore unknown (—)-calanolide A (1a), [a]*% —66° (¢ 0.5,
CHCly).

In summary, we have demonstrated an efficient syn-
thesis of the four sterecisomers of the calanolides. Anti-
HIV activities, other biological data, and structure—
activity relationships will be reported in due course.
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