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Abstract
A green and sustainable nitrone formation reaction via visible-light-promoted reaction of aryl diazoacetates with nitros-
oarenes is described. This protocol exhibits good functional group tolerance and broad substrate scope for both aryl diazoac-
etates with nitrosoarenes. Comparing the reported methods for the synthesis of nitrones from nitrosoarenes, the reaction 
described herein occurs under sole visible-light irradiation without the need of any catalysts and additives.
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1  Introduction

Nitrones are important synthetic building blocks in synthetic 
organic chemistry [1–4]. Generally, nitrones always used 
1,3-dipoles to participate cycloaddition reactions to con-
struct biologically important heterocyclic compounds [5–9]. 
In addition, nitrones can act as electrophiles to react with 
various nucleophiles to form N,N-disubstituted hydroxy-
lamines [10−12] or as radical acceptors to undergo radi-
cal addition to create new chemical bonds [13, 14]. Under 
transition metal catalytic conditions, they can also be used 
as directing groups to realize sp2 C–H activation reactions 
[15, 16]. In addition, many others useful reaction types of 
nitrones are developed in the past several years [17–21].

Due to their wide synthetic applications, many methods 
towards the facile synthesis of nitrones have been developed 
(Scheme 1). Condensation of N-monosubstituted hydroxy-
lamines with aldehydes or ketones is an effective method 
for the preparation of nitrones [1–4, 22–24]. However, those 
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processes always require dehydrating reagents or perform 
at high temperature in a microwave apparatus (Scheme 1a, 
path A). Oxidation of secondary amines, imines or N,N-
disubstituted hydroxylamines is another elegant route to 
form nitrones which often needs the consumption of stoi-
chiometric oxidants (Scheme 1a, path B) [25–27] . In addi-
tion, the reaction to oximes with various electrophiles in 
the presence of metal catalysts to obtain nitrones has also 
attracted much attention (Scheme 1a, path C) [28]. Com-
pared with those well-developed methods, nitrones synthesis 
from commercially available raw material nitrosobenzene is 
relatively undeveloped [29, 30]. In 2014, Ashfeld and their 
co-workers reported a hexamethylphosphorous (P(NMe2)3) 
triamide-mediated addition of 1,2-dicarbonyls to nitroso 
compounds to construct arylnitrones. Using this umpolung 
strategy, the corresponding arylnitrones can be obtained in 
moderate to good yield. However, stoichiometric amounts 
of P(NMe2)3 are needed (Scheme 1b) [29]. Recently, Lat-
tanzi and Mazzanti et al. developed the constructed arylni-
trones from aryl acetates and nitrosoarenes in the presence 
of catalytic amount of 2-tert-butylimino-2-diethylamino-
1,3-dimethylperhydro-,3,2-diazaphosphorine (BEMP) as 
catalyst (Scheme 1b) [30]. Moreover, other types of nitrone 
construction from nitrosoarenes using transition metal- and 
dienamine catalytic strategy have also be realized [31–38]. 
Despite these elegant progresses, to the best of our knowl-
edge, catalyst and additive-free synthesis of nitrones from 
nitrosoarenes has not yet been discovered. Our group 
recently found that photo-generated carbene species from 
diazoalkanes can be efficiently trapped by nitrosoarenes 

under sole blue LED irradiation [39], thus providing a novel 
and efficient route to amides under benign reaction condi-
tions [40–68]. Control experiments revealed that nitrones 
were generated as the key intermediates which rapidly rear-
ranged to the corresponding amides under blue LED irra-
diation. Based on these findings and our ongoing research 
interests on the development of visible-light-promoted fine 
chemical transformations [69–75], we hypothesized whether 
the nitrone intermediates can be isolated through optimizing 
the reaction paraments. Comparing the reported methods for 
the construction of nitrones from nitrosoarenes, the reac-
tion described herein occurred using visible light as green 
energy source without the need of any catalysts and additives 
(Scheme 1b).

2 � Experimental

2.1 � General information

All reactions involving air- or moisture-sensitive reagents or 
intermediates were carried out in pre-heated glassware under 
an argon atmosphere using standard Schlenk techniques. All 
solvents and reagents were purified according to standard 
procedures or were used as received from chemical suppli-
ers. The starting materials were synthesized according to 
literature procedures. The light employed in this work was 
bought from GeAo Chemical: model H106062, 24 W blue 
LEDs. Analytical thin layer chromatography was performed 
using Qingdao Puke Parting Materials Co. silica gel plates 
(Silica gel 60 F254). Visualization was by ultraviolet fluores-
cence (λ = 254 nm) and/or staining with phosphomolybdic 
acid or potassium permanganate (KMnO4). Flash column 
chromatography was performed using 200–300 mesh sil-
ica gel. 1H NMR and 13C NMR spectra were recorded on 
a JEOL JNM ECZ400R at 300 K. Spectra were calibrated 
relative to solvent’s residual proton and carbon chemical 
shift: CHCl3 (δ = 7.26 for 1H NMR and δ = 77.0 for 13C 
NMR). Data are reported as follows: chemical shift δ/ppm, 
integration (1H only), multiplicity (s = singlet, d = doublet, 
t = triplet, q = quartet, dd = doublet of doublets, m = multi-
plet or combinations thereof; 13C signals are singlets unless 
otherwise stated), coupling constants J in Hz, assignment. 
Mass spectra were recorded on a Finnigan MAT 4200S, 
a Bruker Daltonics Micro Tof, a Waters-Micromass Qua-
tro LCZ (ESI); peaks are given in m/z (% of basis peak). 
Melting points were determined by Stuart SMP10 and are 
uncorrected.

2.2 � General procedure for the synthesis of 3

To a 10 mL Schlenk flask equipped with a magnetic stir bar 
was added 1 (0.2 mmol), 2 (0.1 mmol), dry THF (1.0 mL). 

Scheme 1   Methods for the synthesis of nitrones
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The resulting mixture was degassed via ‘freeze–pump–thaw’ 
procedure (3 times). After the solution was stirred at a dis-
tance of ⁓3 cm from a 24 W blue LED at room tempera-
ture for 4 h. The solvent was removed by vacuum and the 
crude product was purified by flash chromatography on silica 
gel silica: 200–300; eluant: petroleum ether/ethyl acetate 
(20:1–5:1) to provide pure product.

3 � Results and discussion

At the beginning, 2-diazo-2-phenylacetate 1a with nitroso-
benzene 2a was selected as model substrates to optimize 
the reaction conditions (Table 1). It was found that the 
reaction time had significant influence on the product ratio. 
Using DCM as solvent, the corresponding nitrone 3aa can 
be isolated in 46% yield under blue light irradiation in 4 h 
(Table 1, entry 1). Note that, 3aa will rearrange to amide by 
prolonging the reaction time [39]. To further improve the 
reaction efficiency, other reaction paraments were systemati-
cally screened (Table 1, entries 2–5). It was found that most 
of the solvents were suitable for the formation of desired 
nitrone 3aa, and THF was determined as the best reaction 
medium (Table 1, entry 3). Control experiments were also 
performed, and no reaction occurred in the absence of the 
light irradiation (Table 1, entry 6). It should be pointed out 
that 23% yield of the desired nitrone can be obtained when 
the reaction temperature raised to 50 ℃ in dark conditions 
(Table 1, entry 7).

Under the optimized reaction conditions, we first inves-
tigated the substrate scope for the aryldiazoacetate com-
ponents (Table 2). In general, most of the reactions pro-
ceeded smoothly to afford the desired nitrones in moderate 

to good yields and high E/Z ratio. Both electron-rich (–Me) 
and electron-deficient substituents (–F, –Cl, –Br, –CF3) at 
para or meta-positions of the aromatic ring turned out to 
be suitable, providing the corresponding nitrones 3aa-3ga 
in excellent yields (71–95%) and good diastereoselectiv-
ity. To our delight, reaction with aryldiazoacetates bearing 
benzo[d][1,3]dioxole (1h), naphthyl (1i) also proceeded 
well. Note that nitrone containing adamantane formic acid 
(3ja) and replacement of the methyl group with other alkyl 
propargyl (3ka) attached to the aryl group can be obtained 
in 54% and 60%, respectively. In addition, groups (1l-n), 
cyclic alkyl groups (1q and 1r) or the substituents contain-
ing sensitive functional groups, e.g., ether (1o), alkene (1p), 
all successfully yielded the corresponding nitrones in good 
to excellent yields (63–96%) and high E/Z ratio. We also 
introduced some natural products or drug molecules into 
the nitrone skeletons and applied them under the optimal 

Table 1   Reaction optimization between 1 and 2a 

Reaction conditions: 1a (0.2  mmol), 2a (0.1  mmol) in dry solvent 
(1.0 mL) at rt under irradiation with 24 W blue LEDs for 4 h
a Isolated yield. c in dark, at 50 °C

Ph

N2

CO2Me
+

blue LEDs
solvent, rt, 4 h

1a 2a 3aa

Ph
N

O
Ph

N

CO2Me

PhO

Entry Solvent Yield (%)a

1 DCM 46
2 DCE 37
3 THF 91
4 CH3CN 86
5 DMF Trace
6 THF Trace
7 THF 23

Table 2   Scope of aryldiazoacetates

a Reaction performed with 1 (0.2 mmol), 2a (0.1 mmol) in dry 
THF (1.0 mL) at rt under irradiation with 24 W blue LEDs for 4 h. 
b isolated yield.
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3la, 88%, E/Z = 15:1 3ma, 95%, E/Z = 15:1

3pa, 92%, E/Z > 19:13oa, 96%, E/Z = 10:13na, 72%, E/Z > 19:1

3qa, 70%, E/Z > 19:1 3ra, 63%, E/Z > 19:1
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Reaction performed with 1 (0.2  mmol), 2a (0.1  mmol) in dry THF 
(1.0 mL) at rt under irradiation with 24 W blue LEDs for 4 h. Isolated 
yield
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reaction conditions. Pleasingly, natural isolates L-(-)-Bor-
neol (1 s), L-Menthol (1t), Citronellol (1u) were successfully 
converted into nitrones in moderate to high yields (51–83%) 
and with E/Z > 19:1. Metronidazole also smoothly gave the 
drug-modified nitrone 3va with 79% yields.

Next, we examined the compatibility of different nitros-
oarenes and the results is summarized in Table 3. Under 
the optimized reaction conditions, various halogen (2b, 2c, 
2g, 2i), alkyl (2e, 2h), alkoxyl (2k) and aryl (2f) substituted 
nitrosoarenes were all suitable for this reaction, providing 
the corresponding products in 52–95% yields with 10:1 
E/Z ratio. To our delight, nitrosoarenes bearing ester (2d) 
and ketone (2j) fragments were well tolerated and afforded 
desired nitrones in 75% and 66% yields, respectively. Apart 
from phenylnitrosoarene, substrate 2l bearing 2-nitrosopyr-
idine was amenable substrate, giving nitrone 3al in 80% 
yields with high diastereoselectivity. Note that, 2-methyl-
2-nitrosopropane 2 failed to give the final product, this might 
due to the steric of the tBu group. The successful introduc-
tion of Pterostilbene (2n) and Vitamin E (2o) fragment into 
final nitrone also revealed the advantage of this visible-light-
induced nitrone formation strategy.

With the aim at showing the utility of current methodol-
ogy, we implemented a gram-scale synthesis under continu-
ous flow reaction conditions (Scheme 2a). To our delight, 

nitrone 3aa can be obtained in 89% yield using phenyldi-
azoacetate 1a and nitrosobenzene 2a as substrates. Moreo-
ver, treatment of 3aa under reductive conditions with zinc 
powder and NH4Cl provided amino ester derivative 4 in 91% 
yields (Scheme 2b) [76].

Some preliminary control experiments were conducted 
to gain some insight into the mechanism. When 1.0 equiva-
lent of radical scavenger TEMPO was added under standard 
conditions, 3aa still could be isolated in 92% yield. The 
result indicated that a radical pathway might be not involved 
in current reaction (Scheme 3a). It was reported that ethyl 
diazoacetate is an efficient carbene-trapping reagent under 
photochemical conditions [65]. When 1.0 equivalent of ethyl 
diazoacetate was added as a trapping reagent, the reaction 
provided nitrone 3aa in 74% yield, together with 11% yield 
of alkene 6, which suggested the carbene species formed 
during the reaction (Scheme 3b).

On the basis of above experimental results and litera-
ture report [51–68], a plausible reaction mechanism was 
proposed in Scheme 3. Initially, visible-light irradiation of 
aryldiazoacetate resulted in N2 gas extrusion and generated 
the reactive carbene species. The carbene intermediate reacts 

Table 3   Scope of nitrosoarenes

a Reaction performed with 1 (0.2 mmol), 2a (0.1 mmol) in dry 
THF (1.0 mL) at rt under irradiation with 24 W blue LEDs for 4 h. 
b isolated yield.
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Reaction performed with 1 (0.2  mmol), 2a (0.1  mmol) in dry THF 
(1.0 mL) at rt under irradiation with 24 W blue LEDs for 4 h. Isolated 
yield

Scheme 2   Synthetic applications

Scheme 3   Mechanism studies
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with a nitrosoarene via its nucleophilic N-center to give the 
zwitterion intermediate 7, which converts the more stable 
nitrone 3aa as the predominant resonance form.

4 � Conclusions

In summary, we have developed a green and sustainable 
nitrone formation protocol via visible-light-promoted reac-
tion of aryl diazoacetates with nitrosoarenes. Comparing 
the reported methods for the construction of nitrones from 
nitrosoarenes, the reaction described herein occurred under 
sole visible-light irradiation without the need of any cat-
alysts and additives. The reaction showed good substrate 
scope, excellent functional group tolerance for both aryl 
diazoacetate and nitrosoarene components. Moreover, the 
success synthesis of natural product- or drug molecule-
modified nitrones, large-scale preparation in continuous flow 
conditions further render the method attractive and valuable.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s43630-​021-​00062-6.
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