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An efficient and simple method for enantioselective synthesis of (−)-dictyopterene C’ and its derivatives
was developed on the basis of chiral oxazaborolidinium ion-catalyzed enantioselective cyclopropanation
and divinylcyclopropane-cycloheptadiene rearrangement. Utilizing the Julia-Kocienski reaction and
Sonogashira and Suzuki coupling reactions, various 1,4-cycloheptadiene compounds were synthesized
with good results.
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Cyclopropane, a strained small ring, is a structural unit
found in various natural products and bioactive molecules.1

Enantioselective formation of multisubstituted cyclopro-
panes has become a powerful strategy as such compounds
serve as versatile building blocks in organic synthesis
through ring-opening reactions. Among substituted cyclo-
propanes, optically active dicarbonyl-substituted cyclopro-
panes have been applied to various synthetic methodologies
as important intermediates.2 Therefore, considerable atten-
tion has been devoted to development of catalytic asymmet-
ric methods for easy access to multisubstituted dicarbonyl
cyclopropanes. Metal carbenoid-mediated reactions such as
Simmons−Smith type, transition-metal-catalyzed reactions,
and ylide-based cyclopropanation have been studied inten-
sively. However, the two carbonyl groups on the cyclopro-
pane are usually in the trans-configuration with each other.
Synthetic methods forming cis-dicarbonyl-substituted
cyclopropanes have rarely been reported.3 Feng’s group uti-
lized a chiral diamine catalyst to promote cyclopropanation
between α,β-unsaturated ketones and sulfonium ylides.4

In 2011, we reported enantioselective cyclopropanation
between diazoacetates and α,β-unsaturated aldehydes in the
presence of chiral oxazaborolidinium ion (COBI)5 catalyst
(Scheme 1(a)).6a Furthermore, we extended the substrate
scope to alkyl substituents (R3 = alkyl) and accomplished
total synthesis of (+)-hamavellone B (Scheme 1(a)).6b

Encouraged by these results, we planned to synthesize
the 1,4-cycloheptadiene derivatives 4 from cis-divinyl
cyclopropane compound 3 via divinylcyclopropane-
cycloheptadiene rearrangement (DVCPR)7 and anticipated
that the optically active cis-dicarbonyl cyclopropane
2 would be a suitable precursor to various divinyl cyclo-
propane compounds 3. Herein, we describe catalytic

enantioselective cyclopropanation for the synthesis of cis-
dicarbonyl cyclopropanes and their application to total
synthesis of (−)-dictyopterene C’ and 1,4-cycloheptadiene
derivatives (Scheme 1(b)).
Enantioselective cyclopropanation was first examined

with α-bromoacrolein and tert-butyl diazoacetate in the
presence of 20 mol% of COBI catalyst 1a. When the
cyclopropanation was performed at −78 �C in propionitrile
as solvent, cis-2 was obtained as the major product instead
of trans-2 (Table 1, entry 1) in 66% yield with moderate
diastereomeric ratio. The cis relationship between the alde-
hyde and ester groups was confirmed by nuclear Over-
hauser effect (NOE) analysis. This result differed from our
previous cyclopropanation result with α-alkyl-α-diazoesters,
that produce trans-cyclopropane as the major product
(Scheme 1(a)). When the catalyst with a 3,5-dimethyl-
phenyl Ar1 substituent was used, the desired product was
obtained with >99% ee and a small increase than phenyl
Ar1 substituted 1a in diastereomeric ratio (Table 1, entry
2). Next, the effect of changing the boracycle substituent
(Ar2) of COBI catalyst 1 was investigated (Table 1, entries
3–6). Gratifyingly, using COBI 1f, which has an
1-naphthyl substituent at the boron center,8 greatly
improved the yield to 93% and the diastereomeric ratio is
8:1 (Table 1, entry 6). The sterically bulkier diazo tert-butyl
ester gave higher enantio- and diastereoselectivity than the
corresponding diazo ethyl ester (Table 1, entries 6 and 7).
The cyclopropanation reaction with α-chloroacrolein under
optimized conditions provided the corresponding cis-2 in
78% yield with 88% ee (Table 1, entry 8).9

To identify the absolute structure of cis-cyclopropane 2,
chemical transformation of 2 to lactone 6 was performed
(Scheme 2). After radical debromination using Et3B as an
initiator, reduction of the aldehyde at low temperature led
to alcohol product 5 in 54% overall yield. Trifluoroacetic†These authors contributed equally to this work.
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acid (TFA)-catalyzed intramolecular cyclization of 5 gave

chiral cyclopropyl lactone product 6 in 81% yield. Compar-

ison of the optical rotation data of 6 to the literature value10

confirmed the absolute (1S,2R)-configuration of 2.
The observed stereochemistry for the enantioselective

cyclopropanation reaction with COBI catalyst 1 can be ratio-
nalized by the transition-state model shown in Figure 1. The
coordination mode of α,β-unsaturated aldehydes to catalyst
1 is the same as has been previously suggested for

enantioselective Diels–Alder11 and cyclopropanation6 reac-
tions. In the pretransition-state assembly 7 shown in
Figure 1, the re face of acrolein is effectively blocked by the
3,5-dimethylphenyl group of COBI 1. As the diazoacetate
approaches the β-position of acrolein, the tert-butyl ester
moiety is situated away from the aldehyde moiety of
α-bromoacrolein due to a dipole–dipole interaction between
the carbonyl groups. Therefore, nucleophilic addition of tert-
butyl diazoacetate from the si face of the α-bromoacrolein is
facilitated and leads to intermediate 8. Cyclization with loss
of nitrogen gas provides (1S,2R)-cis-cyclopropane 2 as the
major product.
To demonstrate the utility of this stereoselective cis-

dicarbonyl cyclopropane synthesis, the total synthesis of
(−)-dictyopterene C’ was carried out (Scheme 3). Since a
(Z)-configuration of the substrates results in a significant
increase of the activation barrier12 for the DVCPR,
Julia-Kocienski olefination13 was considered to introduce

Scheme 1. Enantioselective cyclopropanation (a) α-substituted-
α-diazoesters with α,β-unsaturated aldehydes, (b) tert-butyl
diazoacetate with α-bromoacrolein and synthetic route to
(−)-dictyopterene C’.

Table 1. Optimization of enantioselective cyclopropanation of tert-butyl diazoacetate and α-bromoacrolein.a

Entry 1 2 X R2 cis/transb Yield (%)c ee (%)d

1 1a 2a Br t-Bu 4.7:1 66 93
2 1b 2a Br t-Bu 5:1 66 >99
3 1c 2a Br t-Bu 5:1 66 >99
4 1d 2a Br t-Bu 4:1 55 >99
5 1e 2a Br t-Bu 5.9:1 62 95
6 1f 2a Br t-Bu 8:1 93 97
7 1f 2b Br Et 4.2:1 99 87
8 1f 2c Cl t-Bu 3.8:1 78 88
a The reactions of tert-butyl diazoacetate (0.24 mmol) with α-bromoacrolein (0.28 mmol) were performed in the presence of 1 (20 mol%) in
propionitrile at −78 �C for 2 h.
b Determined by 1H NMR analysis of the crude reaction mixture.
c Yield of isolated products.
d Determined by HPLC analysis on a chiral stationary phase.

Scheme 2. Synthetic method to optically active lactone 6.
Reagents and conditions: (a) Et3B, n-Bu3SnH, n-hexane, −78 �C,
4 h; (b) NaBH4, MeOH, −78 �C, 1 h, 54% (2-step overall yield);
(c) TFA, CH2Cl2, −78 �C, 4 h, 81%.
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the (E)-alkene substituents of 10 instead of the Wittig reac-
tion, which is known to give (Z)-alkenes. Highly trans-
selective Julia-Kocienski olefination with 1-phenyl-1H-
tetrazole 9 and potassium bis(trimethylsilyl)amide
(KHMDS) provided (E)-alkenes 10 in good to high yields.
After reduction of the tert-butyl ester group to aldehyde by
diisobutylaluminum hydride (DIBAL-H), the Wittig reac-
tion with a methylphosphonium salt using n-butyllithium
introduced the vinyl group to produce divinylcyclopropane
products 3 for DVCPR. Interestingly, while there are some
reports that high temperature is required for DVCPR, cyclo-
propane 3 was not observed under the Wittig olefination
conditions at 0 �C. Apparently all the cis-3 was transformed
to 1,4-cycloheptadienes 12 through the DVCPR endo-boat-
like transition-state 11.6c Finally, reduction of vinyl bro-
mide 12a in the presence of palladium catalyst afforded
desired (−)-dictyopterene C’ 4 in 5 steps and 42% overall
yield. Confirmation of the synthetic (−)-dictyopterene C’
was fully established through comparison of its physical
data including 1H and 13C NMR spectra and optical rota-
tion data to the reported data.14 Based on the synthetic
route in Scheme 3, various chiral 1,4-cycloheptadiene
derivatives 12a–c were synthesized in moderate to high
yields.

Since the bromo substituent of 1,4-cycloheptadienes 12
is easily transformed into a large variety of other moieties
with Pd(0) catalysis, further chemical transformations of
12a were carried out to prepare (−)-dictyopterene C0 deriv-
atives 13 and 14 (Scheme 4). Sonogashira coupling15 of
12a with phenyl acetylene under modified reaction condi-
tions16 provided 13 in 73% yield. Suzuki coupling17 of 12a
with phenyl boronic acid in the presence of Pd(PPh3)4
proceeded smoothly to give phenyl 1,4-cycloheptadienes
14 in 99% yield without obvious loss of enantiopurity.
In conclusion, we developed a COBI-catalyzed

enantioselective cyclopropanation for the synthesis of
optically active cis-dicarbonyl cyclopropanes, which were
successfully applied to a convenient synthetic route to chi-
ral 1,4-cycloheptadiene derivatives. The efficient synthetic
process for enantioselective synthesis of (−)-dictyopterene
C’ was accomplished in 42% overall yield and five steps
from α-bromoacrolein and tert-butyl diazoacetate. More-
over, we synthesized various 1,4-cycloheptadiene derivatives
from 2-bromo-1,4-cycloheptadienes using Sonogashira and
Suzuki coupling reactions. Further chemical transformations
of cis-dicarbonyl cyclopropane compounds are underway in
our laboratory.
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