

Tetrahedron Letters 42 (2001) 3967-3971

TETRAHEDRON LETTERS

Stereopure 1,3-butadiene-2-carboxylates and their conversion into non-racemic α-alkylidenebutyrolactone natural products by asymmetric dihydroxylation

Christian Harcken and Reinhard Brückner*

Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstraße 21, D-79104 Freiburg, Germany Received 26 February 2001; accepted 2 April 2001

Abstract—Dienoic esters 1 with the four possible permutations of the C=C configurations were prepared in two steps via non-stereoselective aldol additions followed by stereospecific β -eliminations. Sharpless dihydroxylations of these esters yielded natural and unnatural α -alkylidene- β -hydroxybutyrolactones 2. Among these were synthetic dihydromahubanolide B (*cis*,*Z*-2a), isodihydromahubanolide B (*cis*,*E*-2a) and, for the first time, litsenolide D₁ (*ent-trans*,*Z*-2b) and the enantiomer *trans*,*E*-2b of litsenolide D₂. Competitively, dihydroxysters 10 were formed. © 2001 Elsevier Science Ltd. All rights reserved.

Naturally occurring α -alkylidene- β -hydroxylactones **2** occur with all conceivable substitution patterns *cis*, *E*-**2**, *cis*, *Z*-**2**, *trans*, *E*-**2** and *trans*, *Z*-**2** (Scheme 1). They comprise (-)-isodihydromahubanolide B (*cis*, *E*-**2a**), (-)-dihydromahubanolide B (*cis*, *Z*-**2a**), (+)-isodihydromahubanolide A (*trans*, *E*-**2a**), (-)-litsenolide D₂ (*ent*-*trans*, *E*-**2b**), (-)-litsenolide C₂ (*ent*-*trans*, *E*-**2c**), (+)-dihydromahubanolide A (*trans*, *Z*-**2a**), (-)-litsenolide D₁ (*ent*-*trans*, *Z*-**2b**), (-)-litsenolide C₁ (*ent*-*trans*, *Z*-**2c**), and analogous compounds containing C=C or C = C bonds in the side-chain R. The (iso)dihydromahubanolides stem from the wood of *Clinostemon mahuba* in Brazil¹ and the litsenolides from the leaves of *Litsea japonica* in Japan.²

We have shown that the asymmetric dihydroxylation ('AD')³ of *trans*-configurated β , γ -unsaturated esters leads, via *cis*-configurated β -hydroxy- γ -lactones,⁴ to structurally diverse, optically active γ -lactones.⁵ We now studied whether the α , β' , β , γ -unsaturated esters 1 are dihydroxylated at the C^{β}=C^{γ} bond in a similar fashion (Scheme 1). This could furnish the four diastereomers of type-2 lactones in optically active form directly or after Mitsunobu inversion of the allylic OH group. Both in the *trans*- and the *cis*-configurated esters 1 the intended site of attack of the AD reagent was a disubstituted C=C bond (which is—differently substi-

^{*} Corresponding author. E-mail: reinhard.brueckner@organik. chemie.uni-freiburg.de

Keywords: asymmetric synthesis; elimination reactions; esters; hydroxylation; lactones.

Scheme 2. (a) LDA, HMPA/THF, -78° C; RCHO.^{7b} (b) MsCl, NEt₃, CH₂Cl₂; KH, THF, $0 \rightarrow 20^{\circ}$ C; 92%.^{7b} (c₁) HC \equiv CCO₂Et; (c₂) *cis*-BrHC=CHMe, Pd(PPh₃)₄ (cat.).^{7a} (d) OsO₄ (20 mol%), NMO, *t*-BuOH/acetone/H₂O, 20^{\circ}C, 1 day; HCl, 4 h; 66%.^{7b}

tuted—usually dihydroxylated with 90–99% *ee* in the *trans*-series and with 20–80% *ee* in the *cis*-series³). However, AD reactions of esters akin to 1 *may* occur at the acceptor-substituted, i.e. $C^{\alpha}=C^{\beta}$, bond rather than

at the acceptor-free, i.e. $C^{\beta}=C^{\gamma}$, bond.⁶ Fortunately, this is not forcedly so: Two syntheses of racemic litsenolide C_2 (*trans*, *E*-**2c**) via the OsO₄/NMO-mediated dihydroxylation of the dienoic ester *cis*, *E*-**7** (Scheme 2) relied upon the same $C^{\beta}=C^{\gamma}$ selectivity which we required.⁷

The first objective of this study⁸ was to obtain the isomerically pure $\alpha,\beta',\beta,\gamma$ -unsaturated esters *trans,E*-1 and *trans,Z*-1 (Scheme 3).⁹ As the first step, the lithium enolate of ester *trans*-8 was hydroxyalkylated with hexadecanal. The 55:45 mixture of the *trans,syn*- and *trans,anti*-diastereomers of the resulting β -hydroxyester 9a was separated by flash chromatography on silica gel,¹⁰ the minor diastereomer preceding the major. Similarly, the aldol addition between lithiated ester *trans*-8 and dodecanal furnished the β -hydroxyesters *trans,syn*-9b and *trans,anti*-9b as a readily separable 66:34 mixture. Being unaware of comprehensive ¹H NMR analyses of all diastereomers of an unsaturated hydroxy-ester like compound 9b, pertinent δ_{1-H} and ³J_{H,H} values are collected in Table 1.¹¹

Dehydrations of β -hydroxyesters can be *syn*- or *anti*selective but mixed mechanisms or subsequent isomerizations can interfere with obtaining good stereocontrol. This is a notorious problem when the Z-configurated, less stable α,β -unsaturated ester is to be formed—no matter whether by a *syn*-elimination from a *syn*-configurated β -hydroxyester¹² or by an *anti*-elimination from its *anti*-isomer.¹³ We achieved *highly anti*selective dehydrations of all hydroxyesters *trans,syn*-

Scheme 3. (a) LDA (1.1 equiv.), THF, -78° C, 30 min; RCHO (0.95 equiv.), $\rightarrow 0^{\circ}$ C, 30 min; 47% trans,syn-9a, 38% trans,anti-9a; 57% trans,syn-9b, 29% trans,anti-9b. (b) PPh₃ (2.0 equiv.), DEAD (2.0 equiv.), THF, $-40 \rightarrow 20^{\circ}$ C, 5 h; a: 91% (*E*/*Z* 98:2); b: 86% (*E*/*Z* 98:2). (c) Same as (b); a: 92% (*Z*/*E*>98:2); b: 82% (*Z*/*E* 98:2). (d) AD-mix α^{TM} (1.4 g/mmol), MeSO₂NH₂ (1.0 equiv.), t-BuOH/H₂O 1:1, 0°C, 6 days; 21% cis,*E*-2a (45% b.o.r.s.m.; 78% ee), 10% trans,anti-10a (21% b.o.r.s.m.), 53% trans,*E*-1a; 28% cis,*E*-2b, 7% trans,anti-10b. (e) K₃Fe(CN)₆ (3.0 equiv.), K₂CO₃ (3.0 equiv.), (DHQ)₂PHAL (10 mol%), K₂OSO₃(OH)₂ (2.0 mol%), MeSO₂NH₂ (1.0 equiv.), t-BuOH/H₂O (1:1), 0°C, 24 h; 28% cis,*E*-2a (68% ee), 8% trans,anti-10a. (f) Same as (d); 4 days; 49% cis,*Z*-2a, 29% trans,syn-10a; 65% cis,*Z*-2b, 11% trans,syn-10b. (g) Same as (e); 24% cis,*Z*-2a, 18% trans,syn-10a.

Table 1. Selected ¹H NMR data (CDCl₃, 300 MHz) of aldol adducts 9b

Compound	$\delta_{\gamma-\mathrm{H}}$	$\delta_{ m eta m -H}$	$\delta_{ m lpha-H}$	$\delta_{\beta'-\mathrm{H}}$	$J_{\gamma,eta}$	$J_{eta,lpha}$	$J_{lpha,eta}$
trans,syn-9b	5.67	5.55	3.01	3.86	15.4	9.0	4.7
trans,anti-9b	5.65	5.41	3.05	3.78	15.5	9.0	8.3
cis,syn-9b	5.82	5.57	3.43	3.93	10.7	10.0	4.4
cis,anti-9b	5.71	5.38	3.43	3.83	10.8	9.1	9.1

and *trans,anti*-**9a,b** by treatment with excess PPh₃/ diethyl azodicarboxylate (THF, -40°C→rt; Scheme 3):¹⁴ β-hydroxyesters *trans,syn*-**9a,b** yielded dienoic esters *trans,E*-**1a,b** (86–91%, *E*/*Z* 98:2) while β-hydroxyesters *trans,anti*-**9a,b** provided esters *trans,Z*-**1a,b** (82– 92%, *Z*/*E*≥98:2). The configuration of the newly formed C=C bond was deduced from δ_{3-H} =6.60 (*Z*) or 5.78 (*E*).

Dienoic esters **1a**,**b** were dihydroxylated using AD-mix α^{TM} and dienoic esters **1a** additionally by using 10 mol% (DHQ)₂PHAL (instead of 1 mol% in AD-mix α^{TM}) and 2.0 mol% K₂OsO₃(OH)₂ (instead of 0.2 mol% in AD-mix α^{TM}) (Scheme 3). Such an 'improved procedure'¹⁵ had increased the *ee* of the AD of another substrate containing a methyl-substituted C=C bond from 80 to 94%.^{5e} The α -alkylidene- β -hydroxylactones **2a**,**b** resulted in 21–65% yields. Competing AD of the C^{α}=C^{β} bond furnished dihydroxyesters **10a**,**b** in 7–18% yield. Sparing solubility of the highly lipophilic substrates **1** in the polar reaction mixture contributed to the sub-optimal yields; for example, we re-isolated ester *trans*,*E*-**1a** in up to 53% yield. The *ee* of hydroxylactone

*cis,E-***2a** was 78%, according to chiral HPLC, when formed under standard AD conditions [21% yield; 45% based on recovered starting material ('b.o.r.s.m.')] or 68% using the modified AD procedure (28% yield). From the specific rotation $[\alpha]_D = -38.2$ for a 76% *ee* 90:10 mixture of hydroxylactones *cis,Z-/cis,E-***2a**¹⁶ and the specific rotation $[\alpha]_D = -93.3$ of natural *cis,E-***2a**,¹⁶ one deduces $[\alpha]_D \approx (-38.2+0.1\times0.76\times93.3)/(0.9\times0.76) =$ -45.5 for *cis,Z-***2a**.¹⁷ Our specimen of *cis,Z-***2a** possessed $[\alpha]_D = -30$ so that one infers $ee \approx (-30)/(-45.5) =$ 66%.

Overall, optically active isodihydromahubanolide B (*cis*,*E*-**2a**) and dihydromahubanolide B (*cis*,*Z*-**2a**) were obtained after only three synthetic steps. This compares well with previous syntheses which had led to a *cis*,*Z*-/*cis*,*E*-**2a** mixture (separable only by preparative TLC; 14 steps from dimethyl L-tartrate¹⁸), to both *cis*,*E*- and *cis*,*Z*-**2a** (13 steps from D-glucose bisacetonide¹⁹), to a 90:10 *cis*,*Z*-/*cis*,*E*-**2a** mixture (76% *ee*; seven steps from 1-octadecyne¹⁶) or to a 75:25 *cis*,*E*-/*cis*,*Z*-**2a** mixture (eight steps from ethyl *S*-lactate²⁰).

Scheme 4. (a) LDA (1.23 equiv.), THF/DMPU 8:1, -78° C, 30 min; dodecanal (1.4 equiv.), $\rightarrow 0^{\circ}$ C, 1 h; 49% *cis,syn-9b*, 38% *cis,anti-9b*. (b) PPh₃ (2.0 equiv.), DEAD (2.0 equiv.), THF, $-20 \rightarrow 20^{\circ}$ C, 4 h; 81% (*E*/*Z*>99:1, *cis/trans* 97:3). (c) Same as (b); 83% (*Z*/*E*>99:1, *cis/trans* 95:5). (d) AD-mix α^{TM} (1.4 g/mmol), MeSO₂NH₂ (1.0 equiv.), *t*-BuOH/H₂O 1:1, 5°C, 7 days; 22% *trans,E-2b* (47% b.o.r.s.m.; 28% *ee*), 15% *cis,anti-10b* (32% b.o.r.s.m.), 53% *cis,E-1b*. (e) K₃Fe(CN)₆ (3.0 equiv.), K₂CO₃ (3.0 equiv.), (DHQ)₂PHAL (10 mol%), K₂OSO₃(OH)₂ (2.0 mol%), MeSO₂NH₂ (1.0 equiv.), *t*-BuOH/H₂O (1:1), 0°C, 24 h; 15% *trans,E-2b* (36% *ee*), 14% *cis,anti-10b*. (f) Same as (d); 28% *trans,Z-2b* (43% b.o.r.s.m.; 16% *ee*), 15% *cis,syn-10b* (23% b.o.r.s.m.), 34% *cis,Z-1b*. (g) Same as (e); 30% *trans,Z-2b* (16% *ee*), 6% *cis,syn-10b*.

The OH group of lactone *cis,E-***2b** stayed inert under Mitsunobu conditions²¹ even after prolonged stirring (2 days) at elevated temperature (80°C). Treatment with PBu₃, tetramethyl azodicarboxamide and PhCO₂H²² furnished 47% of a 87:13 *E/Z*-mixture of the 1,2-elimination product, i.e. α -dodecylidene- γ -methyl- Δ^4 butenolide. Attempted S_N reactions with the mesylate derived from *cis,E-***2b** gave mixtures of the S'_N-product (KO₂, DMSO, rt, 12 h²³) and the 1,4-elimination product (KOAc, 18-crown-6, DMF, 0°C, 8 h²⁴). Lactone *cis,Z-***2b** resisted attempts of configurational inversion, too.

Circumventing this inertia, α -alkylidene- β -hydroxylactones *trans*, *E*-**2b** and *trans*, *Z*-**2b** were synthesized from ester *trans*-11 by the strategy of Scheme 3, i.e. by an aldol addition (¹H NMR data: Table 1) followed by stereospecific β -eliminations and standard or modified ADs (Scheme 4). Even the PPh₃/DEAD-mediated dehydration delivering the hindered dienoic ester cis,Z-1b was highly anti-selective (\rightarrow >99:1 Z/E- and 95:5 cis/ trans-ratios). The AD reactions of cis, E- and cis, Z-1b produced hydroxylactones trans, E- and ent-trans, Z-2b in only 15-22 and 28-30% yield, respectively. This seems to be caused by lacking solubility-53% dienoic ester cis, E-1b and 34% cis, Z-1b were re-isolated—and by competing ADs of the $C^{\alpha}=C^{\beta}$ bond—6–15% dihydroxyesters 10a,b were found. According to chiral HPLC, the ee of lactone trans, E-2b was 28-36% and the ee of ent-trans, Z-2b 16%.25 The discrepancy between the formation of (+)-litsenolide D₂ (*trans*, *E*-2b) from cis, E-1b and AD-mix α^{TM} and Sharpless' mnemonic guideline for the side-selectivity of this reaction should be noted.³ By their ¹H NMR spectra and the signs of their specific rotations, lactones enttrans,Z-2b (levorotatory) and trans,E-2b (dextrorotatory) were identical with natural (-)-litsenolide D_1 and the mirror image of natural (-)-litsenolide D_2 , respectively. These compounds were thus prepared in nonracemic form for the first time, the straightforwardness of our three-step route being attractive in view of step-requirements between 8 and 13 of the previous syntheses.26

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft. We are indebted to Dr. Olivier Lohse (Novartis Pharma AG, Basel) for the determination of the *ee*'s by chiral HPLC.

References

- (a) Martinez V., J. C.; Yoshida, M.; Gottlieb, O. R. *Tet-rahedron Lett.* **1979**, 1021–1024; (b) Martinez V., J. C.; Yoshida, M.; Gottlieb, O. R. *Phytochemistry* **1981**, *20*, 459–464.
- (a) Takeda, K.; Sakurawi, K.; Ishii, H. *Tetrahedron* 1972, 28, 3757–3766;
 (b) Tanaka, H.; Nakamura, T.; Ichino, K.; Ito, K.; Tanaka, T. *Phytochemistry* 1990, 29, 857–

859.

- Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2547.
- Precedents: (a) Wang, Z.-M.; Zhang, X.-L.; Sharpless, K. B.; Sinha, S. C.; Sinha-Bagchi, A.; Keinan, E. *Tetrahedron Lett.* **1992**, *33*, 6407–6410; (b) Miyazaki, Y.; Hotta, H.; Sato, F. *Tetrahedron Lett.* **1994**, *35*, 4389– 4392.
- (a) Harcken, C.; Brückner, R. Angew. Chem. 1997, 109, 2866–2868; Angew. Chem., Int. Ed. Engl. 1997, 36, 2750– 2752; (b) Harcken, C.; Brückner, R.; Rank, E. Chem. Eur. J. 1998, 4, 2342–2352 (corrigendum ibid. 2390); (c) Berkenbusch, T.; Brückner, R. Tetrahedron 1998, 54, 11461–11470; (d) Berkenbusch, T.; Brückner, R. Tetrahedron 1998, 54, 11471–11480; (e) Harcken, C.; Brückner, R. New J. Chem. 2001, 40–54; (f) Harcken, C.; Brückner, R. Synlett 2001, 718–721.
- AD of the C^α=C^{β'} bond: Nicolaou, K. C.; Yue, E. W.; La Greca, S.; Nadin, A.; Yang, Z.; Leresche, J. E.; Tsuri, T.; Naniwa, Y.; De Riccardis, F. *Chem. Eur. J.* 1995, *1*, 467–494.
- (a) Li, Y.; Chen, Z.-X.; Huang, J.-M.; Huang, J.-X.; Xu, Z.-H. Gaodeng Xuexiao Huaxue Xuebao 1997, 18, 914– 916 (Chem. Abs. 1997, 127, 220509); (b) Kende, A. S.; Toder, B. H. J. Org. Chem. 1982, 47, 167–169.
- Harcken, C. Doktorarbeit; Universität Göttingen: Germany, 2000.
- All new compounds gave satisfactory ¹H NMR and IR spectra as well as correct combustion analyses.
- Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923–2925.
- 11. In the analogously configurated hydroxyesters **9** (n=0) $J_{\alpha,\beta'}$ decreases in the same order *cis,anti-***9** (9.2 Hz)> *trans,anti-***9** (8.4 Hz)>*trans,syn-***9** (5.2 Hz)>*cis,syn-***9** (4.8 Hz) as in our hydroxyesters **9a,b**: Galatsis, P.; Millan, S. D.; Nechala, P.; Ferguson, G. J. Org. Chem. **1994**, 59, 6643–6651.
- Complete Z-selectivity: Corey, E. J.; Letavic, M. A. J. Am. Chem. Soc. 1995, 117, 9616–9617 (corrigendum *ibid*. 12017).
- Incomplete Z-selectivity: Knight, S. D.; Overman, L. E.; Pairaudeau, G. J. Am. Chem. Soc. 1995, 117, 5776–5788.
- Procedure: (a) Bradbury, R. H.; Walker, K. A. M. J. Org. Chem. 1983, 48, 1741–1750; β-eliminations with PPh₃/DEAD from our group: (b) von der Ohe, F.; Brückner, R. Tetrahedron Lett. 1998, 39, 1909–1910; (c) von der Ohe, F.; Brückner, R. New J. Chem. 2000, 659–669; (d) Ref. 5e.
- (a) Bennani, Y. L.; Sharpless, K. B. *Tetrahedron Lett.* **1993**, *34*, 2079–2082; (b) Blundell, P.; Ganguly, A. K.; Girijavallabhan, V. M. *Synlett* **1994**, 263–265.
- 16. Adam, W.; Klug, P. Synthesis 1994, 567-572.
- 17. No $[\alpha]_D$ for natural *cis*, **Z**-**2a** was reported in Ref. 1b. Ref. 18 gives $[\alpha]_D = -37$ for synthetic *cis*, **Z**-**2a**. Based on *that* value our synthetic *cis*, **Z**-**2a** has $ee \approx (-30)/(-37) = 81\%$.
- 18. Tamaka, A.; Yamashita, K. Chem. Lett. 1981, 319-322.
- Wood, W. W.; Watson, G. M. J. Chem. Soc., Perkin Trans. 1 1987, 2681–2688 (steps 1–6) and J. Chem. Soc., Perkin Trans. 1 1990, 3201–3203 (steps 7–13).
- 20. Adam, W.; Renze, J.; Wirth, T. J. Org. Chem. 1998, 63, 226–227.
- Reviews: (a) Mitsunobu, O. Synthesis 1981, 1–28; (b) Hughes, D. L. Org. React. 1992, 42, 335–656.

- 22. Method: Tsunoda, T.; Yamamiya, Y.; Kawamura, Y.; Itô, S. *Tetrahedron Lett.* **1995**, *36*, 2529–2530.
- Method: (a) San Filippo, J.; Chern, C.-I.; Valentine, J. S. J. Org. Chem. 1975, 40, 1678–1680; (b) Corey, E. J.; Nicolaou, K. C.; Shibasaki, M.; Machida, Y.; Shiner, C. S. Tetrahedron Lett. 1975, 37, 3183–3186.
- 24. Procedure: Dener, J. M.; Hart, D. J.; Ramesh, S. J. Org. Chem. 1988, 53, 6022–6030.
- 25. The specific rotation $[\alpha]_D = 13.8$ measured for synthetic *trans,E-2b* (28% *ee* according to HPLC) implies $[\alpha]_D = 49.2$ for the pure enantiomer. The absolute value disagrees from $[\alpha]_D = -21.6$ reported for the natural product (Ref. 2b). The latter must be questioned since the

analogously configurated but C_2 -elongated and/or more unsaturated litsenolides A_2 (Ref. 2a), B_2 (Ref. 2a), C_2 (Ref. 2a), and E_2 (Ref. 2b), show $-40.4 < [\alpha]_D < -45.2$. The specific rotation $[\alpha]_D = -7.3$ measured for synthetic *enttrans*, Z-2b (16% *ee* according to HPLC) corresponds to $[\alpha]_D = -46$ for enantiopure material. This deviates from the value $[\alpha]_D = -8.4$ of the natural product (Ref. 2b), too.

(a) Chen, S.-Y.; Joullié, M. M. *Tetrahedron Lett.* 1983, 24, 5027–5030; (b) Wakabayashi, S.; Ogawa, H.; Ueno, N.; Kunieda, N.; Mandai, T.; Nokami, J. *Chem. Lett.* 1987, 875–878; (c) Wood, W. W.; Watson, G. M. *J. Chem. Soc.*, *Perkin Trans.* 1 1987, 2681–2688.