Cascade Radical Carbonylations Leading to 3-Substituted Cyclohexanones

Yoshitaka Uenoyama, Takahide Fukuyama, Ilhyong Ryu*

Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan Fax +81(72)2549695; E-mail: ryu@c.s.osakafu-u.ac.jp Received 15 May 2006

Abstract: Tin radical mediated [5+1]-annulation methods leading to 3-substituted cyclohexanones were investigated. Cyclohexanones having a quaternary center at the 3-position were synthesized in good yields by allyltin-mediated three- and four-component cascade reactions that involve (i) radical carbonylation, (ii) 6-endo cyclization, and (iii) alkene addition.

Key words: tributyltin radical, allyltributyltin, radical cyclization, casacde reaction, carbon monoxide

Free-radical-mediated annulation methods, which employ carbon monoxide as a C1 synthon, provide useful means for the synthesis of cycloalkanones.¹ General strategies involve (i) radical carbonylation² of an alkyl radical having an alkene moiety to give an acyl radical and (ii) the subsequent cyclization of the acyl radical onto carbon– carbon double bonds. Herein, we report a tin radical mediated [5+1]-annulation method which leads to cyclohexanone derivatives having a functionalized alkyl substituent at the 3-position. The key steps are a 6-*endo* acyl radical cyclization onto the carbon–carbon double bond,³ followed by consecutive carbon–carbon bondforming reactions (Scheme 1).

Scheme 1 Retrosynthetic analysis for 3-substituted cyclohexanones

We prepared 4-siloxy-4-pentenyl phenyl selenide **1a**, and exposed this substrate to typical tributyltin hydride mediated radical carbonylation conditions. At 80 °C, the conversion of **1a** was not complete, whereas the reaction at 110 °C resulted in the formation of the anticipated 3-siloxycyclohexanone **2a** (Equation 1). Premature quenching of the acyl radical by tributyltin hydride to give **3a** competed to some extent; however, at a lower concentration, the 6-*endo* cyclization course predominated to give **2a** in good yield. In the case of 5-iodo-2-sulfonyl-1-pentene (**1b**), the reaction at 80 °C proceeded smoothly to give the corresponding 3-sulfonylcyclohexanone **2b** in 62% yield (Equation 2).

We previously reported that allyltributyltin-mediated radical carbonylations provide a useful tool for the synthesis of a variety of unsaturated ketones,⁴ in which the allyltin serves as a unimolecular chain transfer (UMCT) reagent.⁵ The carbonylation of 5-iodo-1-pentene (1c) in the presence of allyltin/AIBN gave 3-allylcyclohexanone (2c) as the major product (Equation 3).⁶ The formation of the 6*endo* product is presumably due to isomerization of the initially formed 5-exo-type radical to the more stable 6endo radical via consecutive 5-exo/3-exo/β-fission sequence, which would be permitted by the rather slow addition reaction of the 5-exo radical to allyltin.^{5c} On the other hand, cyclohexanones having a quaternary carbon center at the 3-position were prepared smoothly from 5bromo-2-methyl-1-pentene (1d). Thus, the reaction of 1d with allyltributyltin and AIBN under CO pressure gave β -allylated 3-methylcyclohexanone 2d in 85% yield (Equation 4).⁷ Carbonylation of the 4-methyl-4-pentenyl radical and the subsequent 6-endo cyclization of the

SYNLETT 2006, No. 14, pp 2342–2344 Advanced online publication: 24.08.2006 DOI: 10.1055/s-2006-949643; Art ID: Y00606ST © Georg Thieme Verlag Stuttgart · New York

Equation 4

resultant acyl radical took place to give a tertiary radical, which was then allylated by allyltributyltin in an S_H2' fashion leading to **2d**. Similarly, the reaction of **1d**, CO, and methallyltin gave **2e** in 86% yield (Equation 5).

Then, we examined a four-component cascade reaction using a mixture of allyltin reagents and electron-deficient alkenes such as acrylonitrile and ethyl acrylate (Equations 6-9). The reaction of **1d**, CO, acrylonitrile,

and allyltributyltin in the presence of AIBN gave the 3,3disubstituted cyclohexanone 2f (Equation 6). Direct acyl radical addition to acrylonitrile also took place as a side reaction to give 3b. This side reaction was effectively suppressed by using a lower concentration of 1d (0.03 M). Methallyltin and ethyl acrylate also participated in the four-component cascade reaction to give the corresponding cyclohexanones (Equations 7–9).

Scheme 2 summarizes the preferred reaction pathway leading to the four-component product **2h** starting from the 4-methyl-4-pentenyl radical and CO. Thus, in a mixed alkene system, a nucleophilic alkyl radical would favor an electron-deficient alkene, such as ethyl acrylate, over allyltributyltin, whereas the resulting radical, having an electron-withdrawing group, would favor electron-rich alkenes, such as allyltributyltin.

Equation 8

Synlett 2006, No. 14, 2342-2344 © Thieme Stuttgart · New York

Equation 9

Scheme 2 Preferred radical reaction pathway for four-component cascade reaction.

In summary, the consecutive carbonylation and 6-*endo* cyclization sequence of 4-substituted 4-pentenyl radicals to give 1-substituted 3-oxo-cyclohexyl radicals was successfully coupled with the subsequent alkene addition reactions. By using this cascade radical carbonylation strategy, 3-substituted and 3,3-disubstituted cyclohexanones were prepared successfully.

Acknowledgment

I.R. acknowledges a Grant-in-Aid for Scientific Research on Priority Areas 'Advanced Molecular Transformations of Carbon Resources' from MEXT Japan. Y.U. acknowledges a Grant-in-Aid from JSPS scholarship. We thank Hiroshi Yamasaki, Hiroshi Fukushima, and Fumikazu Araki at Osaka University for initial experimental work.

References and Notes

- (a) Ryu, I.; Kusano, K.; Hasegawa, M.; Kambe, N.; Sonoda, N. J. Chem. Soc., Chem. Commun. 1991, 1018. (b) Curran, D. P.; Liu, H. J. Am. Chem. Soc. 1991, 113, 2127.
 (c) Tsunoi, S.; Ryu, I.; Yamasaki, S.; Fukushima, H.; Tanaka, M.; Komatsu, M.; Sonoda, N. J. Am. Chem. Soc. 1996, 118, 10670. (d) Ryu, I.; Nagahara, K.; Kurihara, A.; Komatsu, M.; Sonoda, N. J. Organomet. Chem. 1997, 548, 105. (e) Ryu, I.; Nagahara, K.; Yamazaki, H.; Tsunoi, S.; Sonoda, N. Synlett 1994, 643. (f) Tsunoi, S.; Ryu, I.; Fukushima, H.; Tanaka, M.; Komatsu, M.; Sonoda, N. Synlett 1995, 1249. (g) Curran, D. P.; Sisko, J.; Balog, A.; Sonoda, N.; Nagahara, K.; Ryu, I. J. Chem. Soc., Perkin Trans. 1 1998, 1591. (h) Tsunoi, S.; Ryu, I.; Yamazaki, S.; Tanaka, M.; Sonoda, N.; Komatsu, M. Chem. Commun. 1997, 1889.
- (2) For reviews on radical carbonylations, see: (a) Ryu, I.; Sonoda, N. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 1050.
 (b) Ryu, I.; Sonoda, N.; Curran, D. P. *Chem. Rev.* **1996**, *96*, 177. (c) Ryu, I. *Chem. Soc. Rev.* **2001**, *30*, 16. (d) See also a review on acyl radicals: Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. *Chem. Rev.* **1999**, *99*, 1991.
- (3) For a 6-endo reaction using a Zn-induced system, see ref. 1h.
- (4) (a) Ryu, I.; Yamazaki, H.; Kusano, K.; Ogawa, A.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 8558. (b) Ryu, I.;
 Yamazaki, H.; Ogawa, A.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1993, 115, 1187. (c) Nagahara, K.; Ryu, I.;
 Yamazaki, H.; Kambe, N.; Komatsu, M.; Sonoda, N.; Baba, A. Tetrahedron 1997, 53, 14615. (d) Ryu, I.; Niguma, T.;
 Minakata, S.; Komatsu, M.; Luo, Z.; Curran, D. P. Tetrahedron Lett. 1999, 40, 2367.
- (5) (a) Keck, G. E.; Enholm, E. J.; Yates, J. B.; Wiley, M. R. *Tetrahedron* **1985**, *41*, 4079. (b) Mizuno, K.; Ikeda, M.; Toda, S.; Otsuji, Y. *J. Am. Chem. Soc.* **1998**, *110*, 1288.
 (c) Curran, D. P.; van Elburg, E. J.; Giese, B.; Gilges, S. *Tetrahedron Lett.* **1990**, *31*, 2861. (d) Curran, D. P.; Xu, J.; Lazzarini, E. *J. Chem. Soc., Perkin Trans. 1* **1995**, 3049.
- (6) The reaction also gave the product via a 5-*exo*/allylation sequence in 5% yield. At higher CO pressures, the second carbonylation of the 5-*exo*-radical also took place. Details will be discussed in a full paper.

(7) 3-Allyl-3-methylcyclohexanone (2d)

A magnetic stirring bar, AIBN (26.2 mg, 0.16 mmol), benzene (3.4 mL), 4-methyl-4-pentenyl bromide (**1d**; 92.3 mg, 0.56 mmol), and allyltributyltin (400.0 mg, 1.2 mmol) were placed in a 50-mL stainless-steel autoclave. The autoclave was closed, purged three times with CO, pressurized with 50 atm of CO, and then heated at 80 °C for 12 h. Excess CO was discharged at r.t. The solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane \rightarrow hexane– EtOAc, 10:1) to give 3-allyl-3-methylcyclohexanone (**2d**; 73.3 mg, 85%).