

0040-4039(95)00439-4

Enantioselective Preparation and Hydroboration of Cyclic Enamides: Synthesis of (2S)-Pseudoconhydrine

Wolfgang Oppolzer* and Christian G. Bochet

Département de Chimie Organique, Université de Genève, CH-1211 Genève, Switzerland

Abstract: Successive treatment of 2-alkyl-1-hydroxy-6-carbonylsultampiperidines 1 with NaH and an acylating agent/pyridine in boiling toluene affords optically pure 1-acyl-2-alkyl-1,2,3,4-tetrahydropyridines 2. Hydroboration/oxidation of N-benzoylenamides 2f and 2g furnishes *trans*-2-alkyl-1-benzyl-5-hydroxypiperidines 5f and 5g, respectively. Hydrogenolysis of 5f provides pure (2S)-pseudoconhydrine (7), in 3 steps from 1, R^2 =*n*-C₃H₇ (31% overall yield).

Recently, we described the 2-step conversion of N-acylsultams into carbonylsultam-substituted N-hydroxypiperidines and pyrrolidines $\mathbf{A} \to \mathbf{B} \to \mathbf{C}$. Deoxygenative decarboxylation of hydroxylamines \mathbf{C} (NaH, toluene, reflux) and trapping of the non-isolated imines \mathbf{E} with *i*-Bu₂AlH or R⁵Li/CeCl₃ provided C(2)-monosubstituted or C(2,6)/C(2,5)-*trans*-disubstituted piperidines/pyrrolidines \mathbf{F} in 50 to 68% yield from \mathbf{C} (Scheme 1). ¹

Scheme 1

We then envisaged trapping the *in situ*-produced imines **E** by *N*-acylation to prepare enantiomerically pure cyclic enamides **G**. ²⁾ The latter are promising synthetic intermediates given the potential of substituents R^2 to direct the stereochemistry of addition reactions to the enamide group. ^{3,5)}

Our results are summarized in Scheme 2.

Table 1: Optically Pure Cyclic Enamides by Deoxygenative Decarboxylation/Imine Acylation: $1 \rightarrow 2$.⁴⁾

Entry	N-Hydr	oxypiperidine	Acylation	C	yclic Ena	"Recovered Sultam"	
		R ²	Conditions a)		R ¹	Yield[%]	$X_B * H / X_B * COR^1 [\%]$
1	1	n-C ₃ H ₇	A	2a	OMe	10-34	44/29
2	1	<i>n</i> -C ₁₁ H ₂₃	Α	2b	OMe	22-49	20/58
3	ent-1	<i>n</i> -C ₃ H ₇	А	ent-2c	OBn	21-56	b)
4	1	<i>n</i> -C ₁₁ H ₂₃	А	2 d	OBn	33-42	b)
5	1	<i>n</i> -C ₁₁ H ₂₃	А	2e	Ot-Bu	8	b)
6	1	<i>n</i> -C ₁₁ H ₂₃	В	2e	Ot-Bu	56	<10/75
7/-	11-	n-C ₃ H ₇	B B	2	★ C ₆ H ₅ ★ 4	55 .	47/53 🚰 🔛
8	1	<i>n</i> -C ₁₁ H ₂₃	В	2g	C ₆ H ₅	59	32/47
9	1	<i>n</i> -C ₁₁ H ₂₃	Α	2h	$3,5(NO_2)_2C_6H_3$	57	b)

a) i) 1, NaH, toluene reflux; Method A: ii) R^1COCl or t-Bu(OCO)₂O [entry 5], collidine, r.t., 16 h; Method B: ii) R^1COCl or (t-BuOCO)₂O [entry 6], pyridine, $110^\circ \rightarrow r.t.$ b) Not determined.

Heating a 0.02 M solution of *N*-hydroxylamines 1 in toluene with NaH (1.5 mol equiv., reflux, 3-17 h), followed by addition of an acyl chloride (3 mol equiv.)/sym-collidine at r.t. and stirring at r.t. for 16 h (Method A) gave the expected enecarbamates 2a - 2e in variable yields and the *N*-3,5-dinitrobenzoyl derivative 2h in a more reproducible yield of 57% (Table 1). Alternatively, enamides 2 were obtained in reproducible yields of 55-59% when the acylating agent/pyridine was added to the boiling imine solution and the mixture allowed to cool to r.t. (Method B, *c.f.* entries 5,6). ⁴) In most cases, sultam auxiliary X_B^*H and its *N*-acyl derivative $X_B^*C(O)R^1$ were efficiently "recovered".

With cyclic enamides 2 in hand, we studied their hydroboration/oxidation as a possible route to *trans*-2-alkyl-5-hydroxypiperidines (Table 2). $^{3,5)}$

BH₃.SMe₂ (1.2 mol equiv.) was added to a solution of enecarbamate **2a** in THF at -78°C. Warming the mixture to r.t. over 17 h, addition of water (10-20 mol equiv.), oxidation with aq. 20% NaOH/30% H₂O₂ (1:1, 20-50 mol equiv., 1-2 h, r.t.), extraction (CH₂Cl₂) and FC provided a 3:1-mixture of *trans*- and *cis*-hydroxypiperidines **3a** and **4a**, respectively. This modest diastereomer ratio does not match the ratio **3a/4a** = 6:1, previously claimed to result from similar reaction conditions but rather resembles the 2:1-ratio of **3i/4i**

obtained via hydroboration of carbamate 2i at higher temperature (20°, Table 2, entry 20). 5)

Table 2: Diastereoselective Hydroboration/Oxidation of Cyclic Enamides: $2 \rightarrow 3 + 4$ and $2 \rightarrow 5 + 6$.⁴⁾

Entry	E	Enamid R ¹	e Mo R ²	l equiv. I BH ₃	Hydroboration Temp. [°C]	2-A k y - 5 trans + cis	i -h y d r o x y p i p e Ratio <i>trans/cis</i>	ridines Yield [%]
10	2a	OMe	n-C ₃ H ₇	1.2	-78 → r.t.	3a/4a	76:24 (GC)	68 a)
11	2b	OMe	<i>n</i> -C ₁₁ H ₂₃	1.2	$-78 \rightarrow r.t.$	3b/4b	75:25 (GC)	84 a)
12	ent-2c	OBn	<i>n</i> -C ₃ H ₇	1.2	$-78 \rightarrow r.t.$	ent-(3c/4c)	77:23 (HPLC)	46 ^{b)}
13	2 d	OBn	<i>n</i> -C ₁₁ H ₂₃	1.2	$-78 \rightarrow r.t.$	3d/4d	77:23 (HPLC)	56 ^{b)}
14	2e	O-t-Bu	<i>n</i> -C ₁₁ H ₂₃	1.2	$-78 \rightarrow r.t.$	3e/4e	74:26 (GC)	55 a)
15	2e	O-t-Bu	<i>n</i> -C ₁₁ H ₂₃	10	$-78 \rightarrow r.t.$	3e/4e	76:24 (GC)	54 a)
16	2e	O-t-Bu	<i>n</i> -C ₁₁ H ₂₃	1.2	20	3e/4e	85:15 (GC)	77 a)
17	2e	O-t-Bu	<i>n</i> -C ₁₁ H ₂₃	1.2	55	3e/4e	86:14 (GC)	77 a)
18	210	C ₆ H ₅	<i>n</i> -C ₃ H ₇	. 10	\sim -78 \rightarrow r.t.	51/61	>90:10 (¹ H-NMR)	98(b)
19	2g	C ₆ H ₅	<i>n</i> -C ₁₁ H ₂₃	10	-78 → r.t.	5g/6g	>90:10 (¹ H-NMR)	55 b)
20	2i	OMe	CH ₃	1.0	20	3i/4i	66:34 (FC) lit. 5)	79 b)

a) by GC; b) isolated sum of isomers.

Applying our low temperature hydroboration protocol to 2, and varying the C(2)- and carbamate substituents \mathbb{R}^2 and \mathbb{R}^1 , gave products 3/4 in unchanged 3:1-ratios from the *O*-methyl-, *O*-benzyl- and *O*-t-butyl carbamates 2b - 2e. The product ratio 3e/4e was virtually independent of borane molarity but improved slightly at higher reaction temperatures (entries 14-17).

It was plausible to expect improved stereoselectivities in the hydroboration of cyclic enamides relative to that of enecarbamates owing to the increased double bond character of the amide group. Hence, $A^{(1,3)}$ strain should become more effective in imposing the axial position (and the face-shielding) of the C(2)substituent R² (*c.f.* transition state H[≠]). ⁶) Indeed, successive treatment of *N*-benzoylenamides **2f** and **2g** with BH₃.SMe₂ (10 mol equiv., $-78^{\circ} \rightarrow r.t.$) and H₂O₂/NaOH furnished *trans-N*-benzyl-2-alkyl-5hydroxypiperidines **5f** and **5g**, respectively, with over 90% diastereoselectivity (¹H-NMR). ⁴) These conditions effected the concomitant reduction of the *N*-benzoyl to the *N*-benzyl group which can be conveniently removed by catalytic hydrogenolysis. For example, stirring crude *N*-benzylpiperidine **5f** with Pd(OH)₂/C under H₂ (1 atm, MeOH, 15 h), addition of dry HCl and crystallization (Et₂O/*i*-PrOH) furnished the hydrochloride salt of the hemlock alkaloid pseudoconhydrine (**7**.HCl, m.p. 205-207°) ⁷) in 56% yield from enamide **2f**. A sample, crystallized from CDCl₃, m.p. 213-215°, {lit.: 212-213° 8b}; 208-209° 9a); 220° 9b); 214-215° ^{10a}}; $[\alpha]_D$ = +3.56, (c=0.4, MeOH, 21°), {lit.^{9b}}: $[\alpha]_D$ = +3.06, (MeOH, 25°)}, showed the same IR, ¹H-NMR and ¹³C-NMR data as those previously reported. ^{9a,10c}) Synthetic **7** was converted into its *N*-benzoyl derivative: m.p. 132-133° (Et₂O, pentane), {lit.^{9a}): 130-131°}; $[\alpha]_D$ = +28.5, (c=0.2, CHCl₃, 26°), {lit.^{9a}): $[\alpha]_D$ = +21.3 (c=0.75, CHCl₃, 26°)}.

In summary, optically pure cyclic enamides, accessible via a three-step sequence starting from N-acylsultams A and their antipodes, undergo *trans*-selective hydroborations. This extends the preparative versatility of the deoxygenative decarboxylation/imine trapping concept as illustrated by a synthesis of (2S)-pseudoconhydrine.

Financial support of this work by the Swiss National Science Foundation, Sandoz Pharma Ltd, Basel and Givaudan-Roure AG, Dübendorf, is gratefully acknowledged. We thank Mr. J. P. Saulnier, Mr. A. Pinto and Mrs. D. Klink for NMR and MS measurements.

REFERENCES AND NOTES

- 1) W. Oppolzer, C. G. Bochet, E. Merifield, Tetrahedron Lett. 1994, 35, 7015.
- 2) Preparation of N-acyl-2-pyrrolines by acylation of the trimer of 1-pyrroline: G. A. Kraus, K. Neuenschwander, J. Org. Chem. 1981, 46, 4791.
- Alternative preparation of cyclic enecarbamates by anodic α-methoxylation and NH₄Cl- or SiO₂catalyzed thermal MeOH elimination: T. Shono, Y. Matsumura, K. Tsubata, Y. Sugihara, S. Yamane, T. Kanazawa, T. Aoki, J. Am. Chem. Soc. 1982, 104, 6697.
- 4) All new compounds were characterized by IR, ¹H-NMR, ¹³C-NMR and mass spectra. The starting *N*-hydroxypiperidines were prepared as described for the conversion $\mathbf{A} \rightarrow \mathbf{B} \rightarrow \mathbf{C}$ ref. ¹⁾ employing the (1S,SR)-auxiliary (\rightarrow ent-1) or the antipodal (1R,SS)-auxiliary (\rightarrow 1). The following procedures are representative: Deoxygenative Decarboxylation / Imine Acylation: NaH (60% in mineral oil, 21 mg, 0.52 mmol) was added under Ar to a boiling solution of N-hydroxypiperidine 1, $R^2=n-C_3H_7$ (100 mg, 0.26 mmol) in toluene and the mixture was heated under reflux for 17 h. Then, a solution of benzoyl chloride (110 mg, 0.78 mmol) in pyridine (6 ml) was added and the mixture was slowly cooled to r.t. over 3 h. Addition of aq. 1N NaOH (7 ml), stirring the mixture for 2 h at r.t., extraction (Et₂O) and flash chromatography (FC) gave enamide 2f (33 mg, 55%) and (1R,5S)-N-benzoylbornane-10,2-sultam (45 mg, 53%). Acidification of the aq. phase with HCl to pH = 1, extraction (CH₂Cl₂) and crystallization (Et₂O/pentane) afforded (1R,5S)-bornane-10,2-sultam (26 mg, 47%). Enamide Hydroboration / Oxidation / N-Benzyl Hydrogenolysis: BH3.SMe2 (0.125 ml, 1.3 mmol) was added to a solution of enamide 2f (30 mg, 0.13 mmol) in dry THF (12 ml) at -78° and the mixture was warmed to r.t. over 36 h. Addition of H₂O (0.2 ml), 20% aq. NaOH (0.3 ml) and 30% aq. H₂O₂ (0.3 ml), stirring of the mixture at r.t. for 2 h, addition of H₂O, extraction (CH₂Cl₂), drying (Na₂SO₄) and evaporation gave a >9:1mixture of **5f/6f** [30 mg, 98%, ¹H-NMR (CDCl₃): δ=3.34 ppm (d, J=13.3, 1 H, major); 3.94 ppm (d, J=13.6, 1 H, minor)]. Stirring the mixture 5f/6f with 20% $Pd(OH)_2/C$ (50 mg) in MeOH (18 ml) under H_2 (1 atm.) for 15 h, filtration through SiO₂ (5 x 0.7 cm), addition of an 1.2 N solution of dry HCl in EtOH (0.15 ml), evaporation and crystallization of the residue (i-PrOH/Et₂O) provided the hydrochloride salt of (2S)-pseudoconhydrine (7.HCl, 13 mg, 56% from 2f).
- Hydroboration of 2-alkyl-1-carbomethoxy-1,2,3,4-tetrahydropyridines: M. Plehiers, C. Hootelé, *Tetrahedron Lett.* 1993, 34, 7569; c.f. ref. ³).
- 6) F. Johnson, Chem. Rev. 1968, 68, 375; J. D. Brown, M. A. Foley, D. L. Comins, J. Am. Chem. Soc. 1988, 110, 7445.
- (2S)-Pseudoconhydrine, isolated from Conium maculatum L. and assigned structure 7, ref. ⁸) has been recently synthesized ref. ⁹). Syntheses of (±)-pseudoconhydrine ref. ^{5,10}) and of (+)-N-methylpseudoconhydrine ref. ¹¹).
- 8) a) A. Ladenburg, G. Adam, Ber. Dtsch. Chem. Ges. 1891, 24, 1671; b) K. Löffler, *ibid.*, 1909, 42, 116;
 c) E. Späth, F. Kuffner, L. Ensfellner, *ibid.*, 1933, 66, 591; d) R. K. Hill, J. Am. Chem. Soc. 1958, 80, 1611.
- a) K. Tadano, Y. Iimura, T. Suami, J. Carbohydr. Chem. 1985, 4, 129; b) H. Takahata, K. Inose, T. Momose, *Heterocycles* 1994, 38, 269.
- a) L. Marion, W. F. Cockburn, J. Am. Chem. Soc. 1949, 71, 3402; b) E. Brown, J. Lavoue, R. Dhal, Tetrahedron, 1973, 29, 455; c) K. E. Harding, S. R. Burks, J. Org. Chem. 1984, 49, 40; d) T. Shono, Y. Matsumura, O. Onomura, T. Kanazawa, M. Habuka, Chem. Lett. 1984, 1101.
- 11) T. Shono, Y. Matsumura, O. Onomura, M. Sato, J. Org. Chem. 1988, 53, 4118.

(Received in Germany 1 March 1995; accepted 2 March 1995)