

Available online at www.sciencedirect.com

Inorganica Chimica Acta 359 (2006) 990-997

Inorganica Chimica Acta

www.elsevier.com/locate/ica

Syntheses and characterization of new (pyrazolato)(pyrazole) rutheniums with κ^3 -polypyrazolylborates: Halogeno-anion binding through the tris(pyrazole) moiety

Masayoshi Onishi *, Mamoru Yamaguchi, Shiho Kumagae, Hiroyuki Kawano¹, Yasuhiro Arikawa

Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, Nagasaki 852-8521, Japan

Received 7 July 2005; accepted 14 August 2005 Available online 26 September 2005

Ruthenium and Osmium Chemistry Topical Issue

Abstract

 $(Polypyrazolylborato)(benzonitrile) ruthenium(II) complexes [RuCl{BR(pz)_3}(PhCN)_2](R = pz, H; pz = pyrazol-1-yl), prepared from trans-[RuCl_2(PhCN)_4] and K[BR(pz)_3], were allowed to react with potassium 3,5-dimethyl-substituted polypyrazolylborate salt K[BH(3,5-Me_2pz)_3], and gave (pyrazolato)(pyrazole) species of [Ru{BR(pz)_3}(3,5-Me_2pz)(3,5-Me_2pzH)_2]{R = pz(1), H(2)}, respectively. Upon protonation with HBF_4 (Et_2O), the species 1 was converted to a fairly stable tris(pyrazole) derivative [Ru{B(pz)_4}(3,5-Me_2pzH)_3]BF_4(3), which worked as a novel halogeno-anion receptor. Moreover, the complex [RuCl_2(PhCN)_4] was treated with K[BH(3,5-Me_2-4-Brpz)_3] in the presence of 3,5-dimethyl-4-bromopyrazole, 3,5-Me_2-4-BrpzH, to afford [Ru{BH(3,5-Me_2-4-Brpz)_3}(3,5-Me_2-4-BrpzH)_2] and [Ru{BH(3,5-Me_2-4-Brpz)_3}(3,5-Me_2-4-Brpz)(3,5-Me_2-4-BrpzH)(PhCN)]. Single-crystal X-ray structural analyses were carried out for 1, 3 · CHCl_3, [Ru{B(pz)_4}(3,5-Me_2pzH)_2(OH_2)]O_3SC_6H_4CH_3 · CH_3OH, and [RuCl{B(pz)_4}(3,5-Me_2pzH)_2] · CHCl_3. © 2005 Elsevier B.V. All rights reserved.$

Keywords: Ruthenium; Polypyrazolylborate; Halogeno anion receptor; Pyrazole; Supramolecule

Abbreviations used in this paper: The group $3,5-Y_2pz$ represents a pyrazol-1-yl group with Y substituents at its 3- and 5-positions; The 3,5-Y₂-4-Xpz indicates additional substitution of X at the 4-position of the 3,5-disubstituted group. Their neutral pyrazole molecules are expressed as $3,5-Y_2pzH$ and $3,5-Y_2-4-XpzH$, respectively. General expression of tridentate polypyrazolylborate ligands and their substituted ones, ligating triply via 2-N nitrogen atoms of the groups, are abbreviated simply as BR(pz)₃ and BR(pz*)₃, respectively, and those in other coordination modes are shown in appropriately specified forms, such as κ^2-N,N' -BR(pz)₃ for the bidentately coordinated BR(pz)₃ via two pyrazolyl nitrogen atoms.

Corresponding author. Fax: +81 95 819 2684.

E-mail address: onishi@net.nagasaki-u.ac.jp (M. Onishi).

¹ Present address: Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan.

1. Introduction

Polypyrazolylborate anions $[BR(pz)_3]^-$ (pz = pyrazol-1yl) have been used as versatile supporting ligands for a wide range of transition- and rare earth-metal complexes [1]. Wide-spread considerable attention paid to the anionic tridentate κ^3 -BR(pz)₃ coordination stems probably from their comparison with the well-known η^5 -cyclopentadienyl family [1a–3]. As part of our objectives in developing new (κ^3 -polypyrazolylborato)ruthenium chemistry [4], we have prepared some half-sandwich-type complexes, involving [RuCl{BR(pz)₃}(PhCN)₂] and [RuCl₂{BR(pz)₃}(NO)] (R = pz, H). Stable half-sandwich rutheniums with mono (κ^3 -polypyrazolylborate) contain mostly some auxiliary ligands with competent capabilities in stabilization of the complexes, such as organo nitrile and nitrosyl ligands in (3)

(4)

	(-)
[RuCl{B(pz) ₄ }(3,5-Me ₂ pzH) ₂]	(5)
[Ru{BH(3,5-Me ₂ -4-Brpz) ₃ }(3,5-Me ₂ -4-Brpz)(3,5-Me ₂ -4-BrpzH) ₂]	(6)
[Ru{BH(3,5-Me ₂ -4-Brpz) ₃ }(3,5-Me ₂ -4-Brpz)(3,5-Me ₂ -4-BrpzH)(PhCN)]	(7)

Chart 1.

our cases [4] and tertiary phosphines, carbonyl, π -arene aromatics, and many types of polydentate chelate ligands described in the literatures [1]. As examples without these competent auxiliary ligands, in contrast to the wellknown halo(η^{3} -pentamethylcyclopentadienyl)rutheniums $[Ru(Cp^*)X_n]_m$ (X = Cl, Br, I) [3], the corresponding ha $lo(\kappa^3$ -polypyrazolylborato)ruthenium analogs have not been afforded so far. Moreover, it also seems to be noteworthy that only a few ruthenium complexes have been described, with polypyrazolylborates substituted at 3-positions of their metal-linking pyrazolyl groups [4c-6], in spite of many researches [1,7] of modified electro- and stereochemical properties of analogous polypyrazolylborato complexes with other metal ions. In this paper, we report the syntheses and characterization of a few (pyrazolato)(pyrazole) ruthenium(II) complexes with κ^3 -polypyrazolylborate systems, $BR(pz)_3$ (R = pz, H) and BH(3,5-Me₂-4-Brpz)₃ [8], and also halogeno-anion trapping function [9] of a tris(pyrazole) derivative with the $B(pz)_4$ system (See Chart 1).

2. Results and discussion

2.1. Formation of (pyrazolato)(pyrazole)rutheniums and halogeno-anion incorporation with the tris(pyrazole) moiety

Reactions of the benzonitrile complex trans-[RuCl₂(PhCN)₄] with an equimolar quantity of unsubstituted polypyrazolylborate salts, $K[BR(pz)_3]$ (R = pz, H), in refluxing dichloromethane afforded half-sandwich species of $[RuCl{BR(pz)_3}(PhCN)_2]$ [4]. As preliminarily communicated [10], these half-sandwich species have been converted to hetero sandwich derivatives $[Ru{BR(pz)_3}]$ $\{BR'(pz')_3\}\]$ by further treatment with other polypyrazolylborate anions $BR'(pz')_3$ free from substitution at the 3-position of the pz' group, and the sandwich complexes have demonstrated their utility in the evaluation of electrochemical properties of the respective polypyrazolylborato ligands.

As one extension, the half-sandwich complexes $[RuCl{BR(pz)_3}(PhCN)_2]$ were treated with an equimolar amount of $K[BH(3,5-Me_2pz)_3]$ for the preparation of the sandwiches $[Ru{BR(pz)_3}{BH(3,5-Me_2pz)_3}]$ retaining

3-Me substituents, but separated yellowish green powdery products were found to be (pyrazolato)(pyrazole) species $[Ru{BR(pz)_3}(3,5-Me_2pz)(3,5-Me_2pzH)_2]$ (1) and (2) with pz and H as R, respectively. Coordination structure of 1 was crystallographically disclosed (Fig. 1). Bond cleavages between boron and 1-N nitrogen atoms in polypyrazolylborate anions have been observed in the course of their reactions with some transition- and rare earth-metal compounds [4c,11,12]. In solution state, each NMR spectrum of these products showed spectroscopic equivalence of three metal-linking pz groups in the $BR(pz)_3$ moiety and also of one 3,5-Me₂pz and two 3,5-Me₂pzH ligands, indicating that two NH protons in the (3,5-Me₂pz)(3,5- $Me_2pzH)_2$ part are moving fast on the three non-ligating nitrogen atoms (Fig. 2(a)).

(Pyrazolato)bis(pyrazole)ruthenium moieties in solution state were presumed to retain a trigonal prism-like conformation compelled by intra-molecular hydrogen bonding between pyrazolato and pyrazole ligands (Fig. 2(a)). This motivated us to the study of protonation and deprotonation properties of the moieties as a proton pool. Treatment of the complex 1 in $CDCl_3$ with an equimolar quantity of HBF₄ (Et₂O) changed two ¹H NMR signals of the pyrazolyl methyl groups at δ 2.46 and 0.77 to those at δ 2.54 and 1.16, respectively. Significant lower-field shift of the latter signal is especially noteworthy, and was probably associated with the NH-neighboring 5-Me protons in the

Fig. 1. ORTEP drawing of 1 with 30% probability thermal ellipsoids and atom labels only for important atoms. Hydrogen atoms are omitted for clarity, except NH protons. Selected bond lengths and inter-atomic distances (Å): Ru-N(1) 2.041(3), Ru-N(3) 2.048(4), Ru-N(7) 2.125(4), Ru-N(9) 2.120(3), Ru-B 3.126(5), N(8)-N(10) 2.707(4), N(10)-N(10*) 3.411(6).

Fig. 2. (Pyrazolato)(pyrazole) and its related derivative species of ruthenium. (a) (pyrazolato)bis(pyrazole) species; (b) tris(pyrazole) species; (c) chloride anion incorporated species.

Ru(3,5-Me₂pzH)₃ moiety of the mono-protonated species $[Ru{B(pz)_4}(3,5-Me_2pzH)_3]BF_4$ (3). A broad signal at δ 10.4 was observed with 3H integral, assignable to NH protons of the moiety. In addition, orange crystals of $3 \cdot CHCl_3$ were precipitated and confirmed to be the mono-protonated species 3 as formulated above, by a single-crystal X-ray structural analysis (Fig. 3). When further treatment of 3 was performed with another equimolar amount of HBF₄ (Et₂O), we could not isolate any generated species in a pure state, but ¹H NMR signals (CDCl₃) of the uncoordinated pz ring protons in the $B(pz)_4$ ligand changed from a set of δ 6.76, 8.11, and 8.32 to a new one of δ 7.14, 8.48, and 8.97. Remarkable lower-field shifts of these signals probably indicated additional protonation of the 2-N nitrogen in the uncoordinated pz group. Addition of more quantities of HBF₄ (Et₂O) gave rise to decomposition of the $B(pz)_4$ fragment, probably generating some (pyrazole)ruthenium species on the basis of ¹H NMR spectra.

As for similar mono-protonation of the BH(pz)₃ analogue **2**, the corresponding methyl signals in its ¹H NMR spectra (CDCl₃) showed only slight shifts from δ 2.53 and 0.74 to δ 2.49 and 0.88, respectively, and the ¹¹B NMR doublet ($J_{BH} = 79$ Hz) at δ -22.3 for the BH part disappeared apparently. In this case, the corresponding tris(pyrazole) species was not generated, and these findings were probably associated with other reaction proceedings of HBF₄ (Et₂O) with the BH part, rather than protonation of the pyrazolato ligand 3,5-Me₂pz to form the expected tris(pyrazole) moiety.

On the other hand, the complex 1 was also treated with an equimolar amount of *p*-toluenesulfonic acid monohydrate (TsOH \cdot H₂O) in place of HBF₄ (Et₂O), and crystallization of the reaction mixture gave orange-colored crystals of [Ru{B(pz)₄}(3,5-Me₂pzH)₂(OH₂)]OTs (4).

Fig. 3. ORTEP drawing of molecular cationic part of $3 \cdot \text{CHCl}_3$ with 30% probability thermal ellipsoids and atom labels only for important atoms. Hydrogen atoms are omitted for clarity, except NH protons. Selected bond lengths and inter-atomic distances (Å): Ru–N(1) 2.045(6), Ru–N(3) 2.052(6), Ru–N(5) 2.047(7), Ru–N(9) 2.126(6), Ru–N(11) 2.150(7), Ru–N(13) 2.131(6), Ru–B(1) 3.153(9), N(10)–N(12) 3.48(1), N(10)–N(14) 3.07(1), N(12)–N(14) 3.57(1).

Structure of **4** was crystallographically characterized as shown in Fig. 4, and confirmed dissociation of one 3,5-Me₂pzH molecule. Moreover, it is noted that deprotonation experiments of **1** and **2** were attempted by use of [NEt₄]OH (CH₃OH) in a molar ratio of 1/1, but obvious results were not attained satisfactorily.

Concerning the fairly stable complex 3 (Fig. 2(b)), tris(pyrazole)ruthenium moiety with three NH protons led us to the study of its halogeno anion binding functionality [9,13]. Phosphonium salts [PPh₄]X (X = Cl, Br, I) were added to dichloromethane and deuterated chloroform solutions of 3, and some precipitates of moderately insoluble [PPh₄]BF₄ were removed for liquid-state spectroscopic observation. Fig. 5 exhibits IR spectral change by the increase in the quantity of the added [PPh₄]Cl, in the region of ca. $2550-4000 \text{ cm}^{-1}$. Upon the successive increase in the [PPh₄]Cl quantity by the increment of 1/4 mole relative to **3**, IR absorption band at 3226 cm^{-1} grew strong, and the band at 3424 cm^{-1} was decreased to disappear finally. The former band was the v(NH) for the tris(pyrazole)ruthenium moiety with three NH parts holding up the chloride anion through $NH \cdot \cdot \cdot Cl^{-}$ hydrogen-bonding (Fig. 2(c)), and the latter band was attributed to the one for the moiety without the anion binding. Addition of only equimolar quantity of [PPh₄]Cl was enough for apparently complete conversion from 3 to " $\{(pz)B(pz)_3\}Ru(3,5-Me_2pzH)_3Cl$ ", demonstrating a high affinity for the chloride incorporation.

Fig. 4. ORTEP drawing of molecular cationic part of $4 \cdot CH_3OH$ with 30% probability thermal ellipsoids and atom labels only for important atoms. Hydrogen atoms are omitted for clarity, except NH protons. Selected bond lengths and inter-atomic distances (Å): Ru–N(1) 2.007(4), Ru–N(3) 2.044(4), Ru–N(5) 2.038(4), Ru–N(9) 2.108(4), Ru–N(11) 2.111(4), Ru–O(1) 2.159(3), Ru–B 3.121(6), N(10)–O(1) 3.026(5), N(12)–O(1) 3.002(5).

Fig. 5. IR spectral change of **3** in CDCl₃ by the increase in the $[PPh_4]Cl$ quantities added (a) complex **3**; (b) **3** with 1/4 mole of $[PPh_4]Cl$; (c) **3** with 2/4 mole of $[PPh_4]Cl$; (d) **3** with 3/4 mole of $[PPh_4]Cl$; (e) **3** with 4/4 mole of $[PPh_4]Cl$.

Although IR spectral change has not been regarded as a reliable signal for halogeno anion sensing [14], Fig. 5 displays the extent of captured chloride anion distinctly. Moreover, addition of $[PPh_4]X$ (X = Br, I) in CDCl₃ brought about new IR band growth at 3258 and 3261 cm^{-1} , respectively, certifying analogous binding toward these X⁻ anions. Incorporation of halogeno anions would also be supported by ¹H NMR signal shifts of the methyl groups in the (3,5-Me₂pzH)₃ moiety; the signals were observed at δ 2.57 and 0.62 for Cl⁻, δ 2.54 and 0.81 for Br⁻, and δ 2.52 and 0.97 for I⁻, respectively. It is noted that a mixture of 1 with the equimolar HCl (Et_2O) demonstrated the same IR and NMR signal patterns as those obtained by treatment of 3 with [PPh₄]Cl. Thus, the present system is a new example for the halogeno anion incorporation with the tris(pyrazole) moieties, additionally to the preceding examples; "{HB(3,5-Me₂pz)₃}Pb(3,5-Me₂pzH)₃-Cl" [13a], "[{HB($3^{-t}BupzH$)₃}Cl]AlCl₄" [13b], and "fac-[Re(CO)₃(pzH)₃]Cl" [14].

In order to reveal the structural characteristics of the tris(pyrazole) frame with captured halogeno anions through its three NH parts, we attempted to grow their single crystals for X-ray structural analyses. For example, the complex **3** was mixed with [PPh₄]Cl in chloroform, followed by slow introduction of *n*-hexane vapor. After pro-

longed standing of the solution to precipitate the species " $\{(pz)B(pz)_3\}Ru(3,5-Me_2pzH)_3Cl$ ", some crystals were deposited, but were found to be only its decomposed product [RuCl{B(pz)_4}(3,5-Me_2pzH)_2] (**5**) with a chloroform molecule. Fig. 6 shows the crystal structure of **5**, which was probably supported by the intra-molecular hydrogen bonding [15] between the chloride ligand and two acidic NH protons of the ligating 3,5-Me_2pzH molecules retained. Their inter atomic distances were 2.49(8) and 2.69(8) Å.

2.2. (*Pyrazolato*)(*pyrazole*) ruthenium complexes with the substituted κ^3 -polypyrazolylborato system BH(3,5-Me₂-4-Brpz)₃

of (κ^3 -polypyrazolylborato) complexes, Syntheses substituted at the 3-position in their metal-linking pyrazolyl groups, have been performed for tuning electro- and stereo-chemical properties of the reaction fields built up on the central metal ions [1a,7], but to our knowledge, for ruthenium there are only a few examples, involving $[RuH{BH(3-iPr-4-Brpz)_3}(cod)],$ $[Ru{BH(3,5-iPr_2pz)_3}]$ $(py)(OH_2)_2$ OTf, and $[Ru(Cp){BH(3,5-Me_2pz)_3}]$ [5]. In our reactions of [RuCl₂(PhCN)₄] with potassium 3,5-dimethyl-substituted polypyrazolylborate K[BH(3,5-Me₂pz)₃], we have not isolated any assignable products except the free pyrazole (i.e., 3,5-Me₂pzH). On the other hand, similar reactions with its 4-bromo-substituted salt $K[BH(3,5-Me_2-4-Brpz)_3]$ [8c], in the presence of the pyrazole (3,5-Me₂-4-BrpzH), gave two (pyrazolato)(pyrazole)

Fig. 6. ORTEP drawing of molecular cationic part of $5 \cdot \text{CHCl}_3$ with 30% probability thermal ellipsoids and atom labels only for important atoms. Hydrogen atoms are omitted for clarity, except NH protons. Selected bond lengths and inter-atomic distances (Å): Ru–N(1) 2.069(4), Ru–N(3) 2.045(4), Ru–N(5) 2.023(4), Ru–N(9) 2.103(4), Ru–N(11) 2.107(4), Ru–Cl(1) 2.451(1), Ru–B 3.120(5), N(10)–Cl(1) 3.243(5), N(12)–Cl(1) 3.282(5).

products, which were spectroscopically characterized as $[Ru{BH(3,5-Me_2-4-Brpz)_3}(3,5-Me_2-4-Brpz)(3,5-Me_2-4-Brp$ zH_{2} (6) and $[Ru{BH(3,5-Me_{2}-4-Brpz)_{3}}](3,5-Me_{2}-4-Brpz)_{3}$ Brpz)(3,5-Me₂-4-BrpzH)(PhCN)] (7). These new products retain 3-Me-substituents on the metal-linking pyrazolyl groups in the (κ^3 -polypyrazolylborato) ruthenium moiety "Ru{BH(3,5-Me₂-4-Brpz)₃}", similarly to our previously reported complex [RuCl₂{BH(3,5-Me₂pz)₃(NO)}] [4c]. In case of the reactions without addition of 3,5-Me₂-4-BrpzH, quantities of the (pyrazolato)bis(pyrazole) complex 6 were small (less than 4% yields), and the (pyrazolato)(pyrazole)(benzonitrile) 7 was the sole major product, infrequently accompanied by generation of a bis(benzonitrile) species of $[RuCl{BH}(3,5-Me_2-4-Brpz)_3](PhCN)_2]$ (8) in significantly lower yields. These κ^3 -BH(3,5-Me₂-4-Brpz)₃ half-sandwich rutheniums with the 3-Me-substituents in their metal-linking pyrazolyl groups have readily replaceable coexistent ligands, i.e., pyrazole, pyrazolato, and benzonitrile, and in comparison with the $BR(pz)_3$ complexes 1 and 2, their chemical reactivity studies are further in progress.

2.3. Conclusion

(Pyrazolato)(pyrazole) ruthenium(II) complexes with κ^3 polypyrazolylborates were separated, which involve [Ru{BR(pz)₃}(3,5-Me₂pz)(3,5-Me₂pzH)₂] {R = pz (1), H (2)}, [Ru{BH(3,5-Me₂-4-Brpz)₃}(3,5-Me₂-4-Brpz)(3,5-Me₂-4-BrpzH)₂] (6), and [Ru{BH(3,5-Me₂-4-Brpz)(3,5-Me₂-4-Brpz)(3,5-Me₂-4-BrpzH)(PhCN)] (7). Moreover, the derived tris(pyrazole) complex of [Ru{B(pz)₄} (3,5-Me₂pzH)₃]BF₄ (3) was found to work as a novel halogeno-anion receptor. Single-crystal X-ray structural analyses were carried out for 1, $3 \cdot CHCl_3$, [Ru{B(pz)₄} (3,5-Me₂pzH)₂(OH₂)]O₃SC₆H₄CH₃ \cdot CH₃OH ($4 \cdot CH_3$ OH), and [RuCl{B(pz)₄}(3,5-Me₂pzH)₂] \cdot CHCl₃ ($5 \cdot CHCl_3$).

3. Experimental

3.1. General procedures

Starting materials, such as potassium polypyrazolyl borate salts [8] and *trans*-[RuCl₂(PhCN)₄] [16], were prepared according to the literature methods. Solvents were dried and distilled over appropriate drying agents. All other reagents were purchased and used without further purification. Under dry oxygen-free nitrogen atmosphere, reactions were performed with using Schlenk flasks, whereas column-chromatographic separations and handling the starting materials and the products in solid state were performed in air. Infrared (IR) spectra were recorded on a JASCO FT-IR 420 spectrometer. NMR spectra were obtained on a JEOL model JNM GX-400 spectrometer, operating at 400 MHz (¹H) and 128 MHz (¹¹B) by the use of tetramethylsilane as an internal standard and trimethyl borate as an external one, respectively. Elemental analyses were performed on a Yanaco MT-3 CHN Cordre by the Centre for Instrumental Analyses of Nagasaki University.

3.2. Reactions of $[RuCl{BR(pz)_3}(PhCN)_2]$ and $K[BH(3,5-Me_2pz)_3]$ to give $[Ru{BR(pz)_3}(3,5-Me_2pz)(3,5-Me_2pzH)_2]$ (1)

In refluxing benzene, the complex $[RuCl{B(pz)_4}(PhCN)_2]$ (110 mg, 0.18 mmol) was treated with K[BH(3,5-Me_2pz)_3] (90 mg, 0.27 mmol) for 2 days. On silica-gel column chromatography, the fraction eluted by dichloromethane/diethyl ether (10/1) was collected to give yellowish green powder of $[Ru{B(pz)_4}(3,5-Me_2pzH)_2]$ (1) (30 mg, 0.045 mmol) in 25% yield.

Mp.; 210–225 °C. ¹H NMR (CDCl₃); δ 0.77 (s, 9H, CH₃), 2.46 (s, 9H, CH₃), 5.70 (s, 3H, 4-H of 3,5-Me₂pz), 6.08 (dd, J = 1.8 and 2.2, 3H, pz), 6.64 (dd, J = 1.5 and 2.2, 1H, pz), 6.96 (bs, 3H, pz), 7.90 (d, J = 2.5, 3H, pz), 8.01 (bs, 1H, pz), 8.19 (d, J = 2.2, 1H, pz). ¹¹B NMR (CDCl₃); δ –18.3 (s). MS (FAB); 669 for [M + 1]⁺. *Anal.* Calc. for C₂₇H₃₅BN₁₄Ru: C, 48.58; H, 5.28; N, 29.38, Found: C, 48.30; H, 5.44; N, 29.20%.

Similar reaction of [RuCl{BH(pz)₃}(PhCN)₂] was performed to afford yellowish green [Ru{BH(pz)₃}(3,5-Me₂pz)(3,5-Me₂pzH)₂] (**2**) in 49% yield. Mp.; 176–194 °C. IR (KBr); 2476 cm⁻¹ for v(BH). ¹H NMR (CDCl₃); δ 0.74 (s, 9H, CH₃), 2.53 (s, 9H, CH₃), 5.63 (s, 3H, 4-H of 3,5-Me₂pz), 6.03 (dd, J = 2.0 and 2.4, 3H, pz), 6.83 (bs, 3H, pz), 7.76 (d, J = 2.4, 3H, pz), 13.5 (bs, 2H, NH). ¹¹B NMR (CDCl₃); δ –22.3 (d, J = 79). MS (FAB); 602 for M⁺. *Anal*. Calc. for C₂₄H₃₃BN₁₂Ru: C, 47.93; H, 5.53; N, 27.94. Found: C, 47.78; H, 5.76; N, 27.85%.

3.3. Preparation of $[Ru\{B(pz)_4\}(3,5-Me_2pzH)_3]BF_4(3)$ from 1 and its further protonation

To the dichloromethane solution of $[Ru{B(pz)_4}(3,5-Me_2pz)(3,5-Me_2pzH)_2]$ (16 mg, 0.023 mmol), diethyl ether solution (50%) of HBF₄ (3.4 ml, 0.023 mmol) was injected. After 10 min stirring and solvent evaporation under vacuum, recrystallization of the residue from dichloromethane and diethyl ether gave orange powder of $[Ru{B(pz)_4}(3,5-Me_2pzH)_3]BF_4$ (3) (14 mg, 0.018 mmol) in ca. 75% yield.

¹H NMR(CDCl₃); δ 1.16 (s, 9H, CH₃), 2.54 (s, 9H, CH₃), 5.88 (s, 3H, 4-H of 3,5-Me₂pz), 6.15 (bs, 3H, pz), 6.62 (bs, 3H, pz), 6.76 (bs, 1H, pz), 7.77 (bs, 3H, pz), 8.11 (bs, 1H, pz), 8.32 (bs, 1H, pz), 10.4 (bs, 3H, NH). ¹¹B NMR (CDCl₃); δ –18.4 (s, B(pz)₄), –19.2 (s, BF₄). MS (FAB); 669 for [M(cationic part)]⁺. *Anal.* Calc. for C₂₇H₃₆B₂F₄N₁₄Ru · 0.5CH₂Cl₂: C, 41.40; H, 4.67; N, 24.58. Found: C, 41.08; H, 4.95; N, 24.32%.

The complex 1 in a NMR tube (CDCl₃) was treated with twofold moles of HBF₄ (Et₂O), and the NMR spectra showed additional protonation of the uncoordinated pyrazolyl group in the B(pz)₄ ligand. However, isolation of the generated species was not succeeded. ¹H NMR(CDCl₃); δ

1.44 (s, 9H, CH₃), 2.43 (s, 9H, CH₃), 5.91 (s, 3H, 4-H of 3, 5-Me₂pz), 6.26 (bs, 3H, pz), 6.71 (bs, 3H, pz), 7.14 (bs, 1H, pz), 7.55 (bs, 3H, pz), 8.48 (bs, 1H, pz), 8.97 (bs, 1H, pz), 10.0 (bs, 4H, NH). ¹¹B NMR (CDCl₃); δ -18.4 (s, B(pz)₄), -19.6 (s, BF₄).

3.4. Halogeno-anion incorporation with the tris(pyrazole) species $[Ru\{B(pz)_4\}(3,5-Me_2pzH)_3]^+$

The complex 1 in dichloromethane was treated with HBF_4 (Et₂O) in an equimolar quantity to produce 3. After 10 min stirring and evaporation in vacuo, the residue was dissolved in CDCl₃ and combined with the phosphonium halides [Ph₄P]X (X = Cl, Br, I) in prescribed quantities. NMR and IR spectroscopic measurements were performed for these solutions.

3.5. Reactions of $K[BH(3,5-Me_2-4-Brp_z)_3]$ with trans-[$RuCl_2(PhCN)_4$]

The (benzonitrile) ruthenium(II) $[RuCl_2(PhCN)_4]$ (200 mg, 0.34 mmol) was treated with K[BH(3,5-Me₂-4-Brpz)₃] (450 mg, 0.79 mmol) in benzene and the mixture was heated with 3,5-Me₂-4-BrpzH (300 mg, 1.71 mmol) under reflux overnight. Benzene-extracted material was chromatographed on a silica-gel column, and benzene elution gave off-white powder of $[Ru{BH(3,5-Me_2-4-Brpz)_3}(3,5-Me_2-4-Brpz)(3,5-Me_2-4-BrpzH)_2]$ (6) (95 mg, 0.082 mmol) in a 24% yield.

Mp.; 155–165 °C. IR (KBr); 2525 cm⁻¹ for v(BH). ¹H NMR (CDCl₃); δ 0.81 (s, 9H, CH₃), 0.95 (s, 9H, CH₃), 2.42 (s, 9H, CH₃), 2.52 (s, 9H, CH₃). MS (FAB); 1160 for M⁺. *Anal.* Calc for C₃₀H₃₉BBr₆N₁₂Ru: C, 31.09; H, 3.39; N, 14.50. Found: C, 31.36; H, 3.34; N, 13.96%.

Moreover, the benzene elution also afforded the (pyrazolato)(pyrazole)(benzonitrile) complex [Ru{BH(3,5-Me₂-4-Brpz)₃}(3,5-Me₂-4-Brpz)(3,5-Me₂-4-BrpzH)(PhCN)] (7) (134 mg, 0.12 mmol) as yellow microcrystals in 36% yield. Mp.; 150–160 °C. IR (KBr); 2523 cm⁻¹ for v(BH), 2217 for v(CN). ¹H NMR (CDCl₃); δ 0.95 (s, 6H, CH₃), 1.02 (s, 3H, CH₃), 1.79 (s, 6H, CH₃), 2.39 (s, 6H, CH₃), 2.46 (s, 6H, CH₃), 2.52 (s, 3H, CH₃), 7.4–7.6 (c, 5H, Ph). MS (FAB); 1087 for M⁺. *Anal.* Calc. for C₃₂H₃₇BBr₅N₁₁Ru: C, 35.35; H, 3.43; N, 14.17. Found: C, 35.63; H, 3.47; N, 13.88%.

Reactions in refluxing benzene without coexistence of free pyrazole were undergone to give 7 and 6 in 43% and 2% yields, respectively, whereas analogous reactions in dichloromethane and chromatographic separation with a dichloromethane and diethyl ether solvent mixture (5/1) infrequently afforded a brown bis(benzonitrile) species of [RuCl{BH(3,5-Me₂-4-Brpz)₃}(PhCN)₂] (8) additionally in significantly low yields. IR (KBr); 2526 cm⁻¹ for v(BH), 2220 for v(CN). ¹H NMR (CDCl₃); δ 2.41 (bs, 9H, CH₃), 2.55 (s, 3H, CH₃), 2.74 (s, 6H, CH₃), 7.48 (t, J = 7.5, 4H, m-Ph), 7.59 (t, J = 7.4, 2H, p-Ph), 7.68 (d, J = 7.4, 4H, o-Ph). MS (FAB); 878 for M⁺. Anal. Calc. for

$C_{29}H_{29}BBr_3ClN_8Ru \cdot CH_2Cl_2$: C, 37.47; H, 3.25; N, 11.65. Found: C, 37.15; H, 3.79; N, 11.64%.

3.6. Single-crystal X-ray structural determinations

Crystallographic data are summarized in Table 1. Single crystals for X-ray structural analyses were obtained as follows: $[Ru{B(pz)_4}(3,5-Me_2pz)(3,5-Me_2pzH)_2](1)$ by serene built-up of two solvent layers, i.e., Et₂O and 1-containing CH_2Cl_2 layers in test tubes; $[Ru{B(pz)_4}(3,5-Me_2pzH)_3]$ $BF_4 \cdot CHCl_3$ (3 · CHCl₃) by vapor diffusion of *n*-hexane into 3-containing CHCl₃ solution; $[Ru{B(pz)_4}(3,5-Me_2pz H_{2}(OH_{2})OTs \cdot CH_{3}OH (4 \cdot CH_{3}OH)$ by vapor diffusion of Et₂O and *n*-hexane into 1-containing CH₂Cl₂ solution with equimolar *p*-toluenesulfonic acid monohydrate and small amount of CH₃OH; and [RuCl{B(pz)₄}(3,5-Me₂pz- H_{2} · CHCl₃ (**5** · CHCl₃) by slow vapor diffusion of *n*-hexane into 3-containing CHCl₃ solution with equimolar amount of [PPh₄]Cl. These single-crystals were sealed in glass capillaries, and X-ray diffraction observations were carried out at 23 °C on an automated Rigaku AFC-7S diffractometer by using graphite-monochromated Mo Ka $(\lambda = 0.7107 \text{ Å})$ radiation.

For 1, diffraction intensity data were collected with the four-circle goniometer and a NaI scintillation counter [11b]: scan type, $\omega - 2\theta$; scan width in ω (deg, °), 0.68 + 0.30 tan θ ; scan rate in ω (deg/min), 16.0.

For the remaining crystals, $3 \cdot \text{CHCl}_3$, $4 \cdot \text{CH}_3\text{OH}$, and $5 \cdot \text{CHCl}_3$, intensity data were obtained on a MSC/ADSC Quantum CCD area detector coupled with the AFC-7S diffractometer. Seven preliminary data frames were measured at 0.5° increments of ω , in order to assess the crystal quality and preliminary unit cell parameters. The intensity images were obtained with ω scans of 0.5° interval per frame for a duration of 35 s. The frame data were integrated using an MSC d*TREK program package, and the data sets were corrected for absorption using a REQAB program.

The crystal structures were solved by direct methods (SIR-92) [17] for 1, $3 \cdot \text{CHCl}_3$, $4 \cdot \text{CH}_3\text{OH}$, and by heavy-atom Patterson method (DIR DIF 94 PATTY) [18] for $5 \cdot \text{CHCl}_3$, respectively, and further expanded using Fourier techniques. The structures were refined through full-matrix least squares method on F^2 by the Rigaku TEXSAN crystallographic package [19]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed at calculated positions with C-H distance of 0.97 Å, except NH hydrogens in ligating pyrazoles of 1, $4 \cdot CH_3OH$, and $5 \cdot CHCl_3$, which were located on the basis of the difference Fourier map and refined isotropically. Four protons were not placed, involving incorporated $CHCl_3$ proton in $3 \cdot CHCl_3$ and OH protons of ligating OH₂ and incorporated CH₃OH molecules in 4 · CH₃OH. In addition, 2-N nitrogen (N(6)) and 5-C carbon (C(8)) in the uncoordinated pyrazolyl group of 1 were disordered with occupancy factors of 0.5/0.5.

	1 ^g	$3 \cdot \text{CHCl}_3$	$4 \cdot CH_3OH$	5 · CHCl ₃
Empirical formula	C ₂₇ H ₃₅ N ₁₄ BRu	C ₂₈ H ₃₇ N ₁₄ B ₂ Cl ₃ F ₄ Ru	C ₃₀ H ₄₁ N ₁₂ BO ₅ SRu	C ₂₃ H ₂₉ N ₁₂ BCl ₄ Ru
Fw	667.55	874.74	793.67	727.25
Crystal system	orthorhombic	triclinic	triclinic	triclinic
Space group	Pnma (# 62)	$P\bar{1}$ (#2)	$P\bar{1}$ (#2)	$P\bar{1}$ (#2)
Color	green	orange	orange	orange
Crystal size (mm)	$0.15 \times 0.15 \times 0.30$	$0.40 \times 0.30 \times 0.15$	$0.35 \times 0.20 \times 0.10$	$0.40 \times 0.20 \times 0.15$
Lattice parameters				
a (Å)	26.196(4)	9.126 (3)	11.433(1)	10.102(3)
b (Å)	14.410(2)	12.924 (4)	12.0351(8)	10.851(2)
<i>c</i> (Å)	8.019(3)	17.066 (6)	14.876(2)	14.881(5)
α (°)		77.187 (6)	80.872(3)	78.156(5)
β (°)		79.092 (3)	71.365(2)	88.910(2)
γ (°)		83.527 (3)	72.341(1)	75.264(1)
$V(Å^3)$	3027(2)	1922.0 (10)	1843.8(3)	1543.0(8)
Z value	4	2	2	2
$\rho_{\text{calc}} (\text{g/cm}^3)$	1.465	1.511	1.429	1.565
μ (Mo K α) (cm ⁻¹)	5.62	6.78	5.37	8.91
Structure solution	direct method (SIR-92)	direct method (SIR-92)	direct methods (SIR-92)	Patterson methods (DIR DIF 94 · PATTY)
Number of unique reflections	3620	8133	7854	6609
Number of observations ^a	3619	8095	7802	6586
Number of variables	230	409	459	378
$R_1^{\rm b,c}$	0.038	0.101	0.056	0.059
R^{d}	0.068	0.197	0.102	0.109
Rw ^e	0.090	0.245	0.131	0.151
Goodness-of-fit S ^f	1.31	1.69	1.40	1.07

Table 1 Crystal and structure refinement data

^a All data.

^b $I > 2.0\sigma(I)$.

^c $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|.$

 $\begin{array}{l} x_1 = \sum_{|r|=0}^{|r|=0} |r| + c_{|r|=0}^{|r|=0} |r| \\ d R = \sum_{|r|=0}^{|r|=0} |r| + c_{|r|=0}^{|r|=0} |r| \\ e R_w = \sum_{|r|=0}^{|r|=0} w(F_o^2 - F_o^2)^2 \sum_{|r|=0}^{|r|=0} w(F_o^2)^2 |r|^2, \\ f S = \sum_{|r|=0}^{|r|=0} w(|F_o| - |F_c|)^2 / (N_o - N_v) |r|^2, \\ where N_o and N_v denote the number of observations and variables. \\ here N_o and N_v denote the number of observations and variables. \\ here N_o and N_v denote the number of observations and variables. \\ here N_o and N_v denote the number of observations and variables. \\ here N_o and N_v denote the number of observations and variables. \\ here N_o and N_v denote the number of observations and variables. \\ here N_o and N_v denote the number of observations and variables. \\ here N_o and N_v denote the number of observations and variables. \\ here N_o and N_v denote the number of observations and variables. \\ here N_o and N_v denote the number of observations and variables. \\ here N_o and N_v denote the number of observations and variables. \\ here N_o and N_v denote the number of observations and variables. \\ here N_o and N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables. \\ here N_v denote the number of observations and variables$

^g Scan type, $\omega - 2\theta$; scan width in ω (deg, °), 0.68 + 0.30 tan θ ; scan rate in ω (deg/min), 16.0. See Section 3 in the text.

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research on Priority Areas (No. 16033101, "Reaction Control of Dynamic Complexes") from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank Emeritus Professor Katsuma Hiraki of this Department and Dr. Kazuto Ikemoto of Mitsubishi Gas Chemical Company, Inc. (Tokyo), for their useful suggestions. Technical assistance by Ms. Junko Nagaoka, Ms. Yumi Kondoh, and Mr. Yuh-suke Itoh is highly appreciated.

Appendix A. Supplementary data

Crystallographic data for the structural analyses have been deposited at the Cambridge Crystallographic Data Centre, CCDC reference numbers; 267921, 267922, 267924, and 267923 for compounds 1, $3 \cdot \text{CHCl}_3$, $4 \cdot CH_3OH$, and $5 \cdot CHCl_3$, respectively. Copies of these information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44 1223 336 033; e-mail: deposit@ccdc.cam. ac.uk or www: http://www.ccdc.cam.ac.uk). Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ica.2005.08.005.

References

[1] See for example, (a) S. Trofimenko, Scorpionates. The Coordination Chemistry of Polypyrazolylbortate Ligands, Imperial College Press, London, 1999:

(b) A. Shaver, in: G. Wilkinson (Ed.), Comprehensive Coordination Chemistry, vol. 2, Pergamon Press, Oxford, 1987, p. 245 (Chapter 13.6):

- (c) S. Trofimenko, Prog. Inorg. Chem. 34 (1986) 115;
- (d) S. Trofimenko, Chem. Rev. 93 (1993) 943;
- (e) S. Trofimenko, J. Am. Chem. Soc. 89 (1967) 3170;
- (f) N. Kitajima, W.R. Tolman, Prog. Inorg. Chem. 43 (1995) 419;
- (g) C. Slugovc, R. Schmid, K. Kirchner, Coord. Chem. Rev. 185-186 (1999) 109.
- [2] See for example, (a) R.H. Crabtree, The Organometallic Chemistry of the Transition Metals, Wiley, New York, 2001, p. 129;
- (b) E.A. Seddon, K.R. Seddon, The Chemistry of Ruthenium, Elsevier, Amsterdam, 1984, p. 750.
- [3] M.A. Bennett, K. Khan, E. Wenger, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 7, Pergamon Press, Oxford, 1995, p. 476 (Chapter 8.2).
- [4] (a) M. Onishi, K. Ikemoto, K. Hiraki, Inorg. Chim. Acta 190 (1991) 157:
 - (b) M. Onishi, K. Ikemoto, K. Hiraki, Inorg. Chim. Acta 219 (1994) 3; (c) M. Onishi, Bull. Chem. Soc. Jpn. 64 (1991) 3039.

- [5] (a) B. Moreno, S. Sabo-Etienne, B. Chaudret, A. Rodriguez, F. Jalon, S. Trofimenko, J. Am. Chem. Soc. 117 (1995) 7441;
 (b) Y. Takahashi, M. Akita, S. Hikichi, Y. Moro-oka, Inorg. Chem.
 - 37 (1998) 3186;(c) Y. Takahashi, S. Hikichi, M. Akita, Y. Moro-oka, Organomet-
 - allics 18 (1999) 2571;
 - (d) A.M. McNair, D.C. Boyd, K.R. Mann, Organometallics 5 (1986) 303;
 - (e) S. Bhambri, D.A. Tocher, Polyhedron 15 (1996) 2763.
- [6] (a) Y. Takahashi, M. Akita, S. Hikichi, Y. Moro-oka, Organometallics 17 (1998) 4884;

(b) A. Caballero, F.G. la Torre, F.A. Jalón, B.R. Manzano, A.M. Rodríguez, S. Trofimenko, M.P. Sigalas, J. Chem. Soc., Dalton Trans. (2001) 427.

[7] (a) See for example, D.P. Long, P.A. Bianconi, J. Am. Chem. Soc. 118 (1996) 12453;

(b) J. Jaffart, C. Nayral, R. Choukroun, R. Mathieu, M. Etienne, Eur. J. Inorg. Chem. (1998) 425;

(c) S.C. Lawrence, B.D. Ward, S.R. Dubberley, C.M. Kozak, P. Mountford, Chem. Commun. (2003) 2880;

- (d) S.-Y. Liu, G.H. Maunder, A. Sella, M. Stevenson, D.A. Tocher, Inorg. Chem. 35 (1996) 76.
- [8] (a) S. Trofimenko, Inorg. Synth. 12 (1970) 99;
 (b) S. Trofimenko, J. Am. Chem. Soc. 89 (1967) 6288;
 (c) A. Albinati, M. Bovens, H. Rüegger, L.M. Venanzi, Inorg. Chem.
 - (c) A. Albinati, M. Bovens, H. Ruegger, L.M. Venanzi, inorg. Chem 36 (1997) 5991.
- [9] (a) A. Bianchi, K. Bowman-James, E. García-España, Supramolecular Chemistry of Anions, Wiley-VCH, New York, 1997;
 (b) P.D. Beer, P.A. Gale, Angew. Chew. Int. Ed. 40 (2001) 486;
 (c) F.P. Schmidtchen, M. Berger, Chem. Rev. 97 (1997) 1609;
 - (d) P.D. Beer, P.A. Gale, D.K. Smith, Supramolecular Chemistry, Oxford University Press Inc., New York, 1999.

- [10] M. Onishi, S. Kumagae, K. Asai, H. Kawano, Y. Shigemitsu, Chem. Lett. (2001) 96.
- [11] (a) R.B. King, A. Bond, J. Am. Chem. Soc. 96 (1974) 1343;
 (b) M. Onishi, N. Nagaoka, K. Hiraki, K. Itoh, J. Alloys Compd. 236 (1996) 6;
 (c) M. Onishi, K. Ikemoto, K. Hiraki, J. Chem. Soc. Jpn., Chem. Ind. Chem. (Nippon Kagaku Kaishi) (1992) 570.
- [12] (a) R.B. King, A. Bond, J. Am. Chem. Soc. 96 (1974) 1334;
 (b) L.M.L. Chia, S. Radojevic, I.J. Scowen, M. McPartlin, M.A. Halcrow, J. Chem. Soc., Dalton Trans. (2000) 133.
- [13] (a) D.L. Reger, Y. Ding, A.L. Rheingold, R.L. Ostrander, Inorg. Chem. 33 (1994) 4226;
 (b) A. Looney, G. Parkin, A.L. Rheingold, Inorg. Chem. 30 (1991) 3099.
- [14] S. Nieto, J. Pérez, V. Riera, D. Miguel, C. Alvarez, Chem. Commun. (2005) 546.
- [15] (a) M.A. Esteruelas, M. Oliván, E. Oñate, N. Ruiz, M.A. Tajada, Organometallics 18 (1999) 2953;
 (b) M.A. Esteruelas, F.J. Lahoz, A.M. López, E. Oñate, L.A. Oro, N. Ruiz, E. Sola, J.I. Tolosa, Inorg. Chem. 35 (1996) 7811.
- [16] B.F.G. Johnson, J. Lewis, I.E. Ryder, J. Chem. Soc., Dalton Trans. (1977) 719.
- [17] A. Altomare, M.C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo, A. Guagliardi, G. Polidori, J. Appl. Crystallogr. 27 (1994) 435.
- [18] DIRDIF94 PATTY; P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, R. de Gelder, R. Israel, J.M.M. Smits, The DIRDIF-94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, Nijmegen, The Netherlands, 1994.
- [19] TEXSAN; Crystal Structure Analysis Package, Molecular Structure Corporation, The Woodlands, TX, 1985, 1999.