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ABSTRACT: The trifluoromethylation of benzoic acids with

TMSCEF; was achieved through nucleophilic substitution with
use of anhydrides as an in situ activating reagent. Under
reaction conditions, a wide range of carboxylic acids including

the
the
the

bioactive ones worked well, thus providing a facile and efficient
method for preparing aryl trifluoromethyl ketones from the readily

available starting materials.

he introduction of fluorine is a strategy to enhance or

change the physical and chemical performance of
functional molecules in chemical science,' material science,”
and biological science.” In particular, it is reported that ca. 20%
of medicines and 30% of pesticides contain at least one fluorine
atom.* Trifluoromethyl ketones are a kind of important
organofluorine compound. In addition to the lipophilicity
and metabolic stability,” these compounds also exhibit strong
electron-withdrawing ability and are capable of forming stable
hydrates.” These specific properties have lead to their wide
application in drug design and development. Trifluoromethyl
ketones are also important building blocks for other fluorine-
containing functional molecules due to the diverse reactivity of
the carbonyl group. Traditionally, the nucleophilic substitution
of aryl metals (Li or Mg) with trifluoroacetyl derivatives can
produce trifluoromethyl ketones;” however, the harsh reaction
conditions limit the application. The Friedel—Crafts acylation
of electron-rich arenes is also used despite the narrow substrate
scope and issues of regioselectivity.” Thus the development of
more efficient methods for their preparation is of current
concern (Scheme 1).” Nowadays, the transition-metal-
catalyzed trifluoroacetylation of aryl halides/pseudohalides
has been developed for preparing these compounds.'’ The
oxidation of a-trifluoromethyl alcohols is also extensively

Scheme 1. Synthesis of Aryl Trifluoromethyl Ketones
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Trifluoromethylation of carboxylic acids forming trifluoromethyl ketones
o CsF, base, anhydride o

Py +  TMSCF; A

R OH solvent R CF;

up to 99% yield

Q Readily available starting materials QO Metal-free conditions

Q Wide substrate scope Q High functional group tolerance

Q Applicable to the modification of bioactive molecules QO Scalable

R = aryl, alkyl

used;'" however, the alcohols should be presynthesized from
the unstable aldehydes; overstoichiometric special oxidants are
also required.

Herein we report a trifluoromethylation of benzoic acids
with TMSCF; to produce aryl trifluoromethyl ketones in good
to high yields (Scheme 1). Carboxylic acids are abundant and
readily available raw chemicals. Compared with the aromatic
aldehydes and aryl halides used in the established reactions,
they are cheaper and environmentally benign. To our
knowledge, the synthesis of trifluoromethyl ketones through
the direct trifluoromethylation of carboxylic acids has never
been achieved. It should be noted that carboxylic derivatives
such as acyl halides,'” esters,"* and Weinreb amides'* can also
produce trifluoromethyl ketones through the addition with
TMSCEF, and the subsequent H;O*/F~ treatment (Scheme 1).
The multistep operation, that is, the presynthesis of starting
materials and the two-step reaction process, reduces the step
efficiency and atomic utilization.

A mixture of 4-phenyl benzoic acid and TMSCF; (3 equiv)
dissolved in PhOMe was allowed to react at 120 °C for 15 h in
the presence of TFAA (2 equiv) and DMAP (2.5 equiv), and
the corresponding aryl trifluoromethyl ketone (3a) was
produced in 80% yield (Table 1, entry 1). By adding 2.5
equiv of CsF to the reaction mixture, the yield of 3a was
increased to 90% (Table 1, entry 2). Lowering the reaction
temperature to 100 °C led to a slight decrease in the yield,
whereas the reaction efficiency was also not enhanced when
the reaction was conducted at 140 °C (Table 1, entries 3 and
4). The choice of an in situ activating reagent was essential to
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Table 1. Trifluoromethylation of 4-Phenyl Benzoic Acid
with TMSCF,*

/0 CsF, base, anhydride
Ph + TMSCF,
OH solvent, 120 °C, 15 h

1a 2 3a
entry anhydride base solvent yield (%)”
1° TFAA DMAP PhOMe 80
2 TFAA DMAP PhOMe 90
34 TFAA DMAP PhOMe 57
4¢ TEFAA DMAP PhOMe 80
S DMAP PhOMe N.D.
6 Piv,0 DMAP PhOMe N.D.
7 Ac,0 DMAP PhOMe N.D.
8 Boc,O DMAP PhOMe N.D.
9 Ms,0 DMAP PhOMe 19
10 T£,0 DMAP PhOMe 41
11 TFAA PhOMe N.D.
12 TFAA NaHCO; PhOMe N.D.
13 TFAA Na,CO;, PhOMe trace
14 TFAA Et;N PhOMe trace
15 TFAA DBU PhOMe trace
16 TFAA pyridine PhOMe trace
17 TFAA DMAP THF 60
18 TFAA DMAP cyclohexane 71
19 TFAA DMAP NMP 28
20 TFAA DMAP CH;CN 77
21 TFAA DMAP toluene 64
22 TFAA DMAP 1,4-dioxane 72

“Reaction conditions: 4-phenyl benzoic acid 1a (0.2 mmol), TMSCF,
(2, 3.0 equiv), anhydride (2.0 equiv), CsF (2.5 equiv), base (2.5
equiv), solvent (2.0 mL), N,, 120 °C, 15 h. TFAA, trifluoroacetic

anhydride; DMAP, 4-dimethylaminopyridine. DBU, 1,8—
diazabicyclo[5.4.0Jundec-7-ene. NMP, N-methyl yrrohdone bGC
yields using dodecane as an internal standard. “Without CsF. 9140 °C.

€100 °C.

this reaction. No product was detected without anhydride or
with Piv,0, Ac,0, or Boc,0O (Table 1, entries 5—8). Low
yields were also given when Ms,O and Tf,0 were used instead
(Table 1, entries 9 and 10). The base was also an important
factor for this reaction. No reaction took place in its absence
(Table 1, entry 11). No or only a trace amount of 3a was
obtained with the use of NaHCO;, Na,CO;, Et;N, DBU, or
pyridine under similar reaction conditions (Table 1, entries
12—16). Finally, this reaction could also occur in other
selected solvents such as THF, cyclohexane, NMP, CH,CN,
toluene, and 1,4-dioxane, but the yields decreased to some
extent (Table 1, entries 17—22).

With the optimal reaction conditions in hand, we
subsequently investigated the substrate scope of this
trifluoromethylation reaction. As compiled in Table 2, various
carboxylic acids worked well under the present reaction
conditions to produce the corresponding trifluoromethyl
ketones in good to high yields. Thus in addition to 1a, a
high yield was obtained from 3-phenyl benzoic acid (Table 2,
entry 2). Probably because of the steric hindrance, the yield
slightly decreased with 2-phenyl benzoic acid (Table 2, entry
3). Other substrates with electron-donating groups such as
cyclohexyl, tert-butyl, and methoxy groups, the easily hydro-
Iytic phenoxy groups, and the alkaline dimethylamino groups
were also smoothly transformed into the expected products in
high yields (Table 2, entry 4—8). Halo iodine survived well in
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Table 2. Trifluoromethylation of Carboxylic Acids with
TMSCF,"

9 CsF, DMAP, TFAA
e T T,

R=C=0OH + TMSCF;

Q
R=C=CF,

1

Entry Acids 1

I\ 4§
R= OH
1 1a,R=4-Ph
2 1b,R=3-Ph
3 1¢,R=2-Ph
4 1d, R = 4-n-hexyl
5  1e,R=4-tBu
6
7

1f, R = 4-OMe 3f, R = 4-OMe, 76 (76)%
1g, R = 4-OPh 3g, R = 4-OPh, 78 (74)%
8  1h,R=4-NMe, 3h, R = 4-NMe,, 71 (68)%
9 1§, R =4 3i, R = 4-1, 96 (89)%
10 1j, R =21 3j, R = 2-1, 79 (72)%

11° 1k, R = 4-NO,
12¢ 11,R=4-CN
13 1m, R = 4-PhC(0)

O,

PhOMe, 120 °C, 15 h

TMSCF3 2

14 1n,R'=2-Me, R? = 4-OMe
15% 10, R" = 3-CI, R? = 5-OMe

e

16> 1p
o
o
- OH
?
_0
1q
oi OH
o
‘ A OH
S
R
1s,R=H

20 1t, R=6-OMe
21 1u,R=6-Br

-
-‘O

239 1w

(0]
o
P2
N
v
(0]

3

Product 3, GC (isolated) yield

o}
RA=/" CF,
3a, R = 4-Ph, 90 (86)%

3b, R = 3-Ph, 85 (87)%
3¢, R = 2-Ph, 77 (68)%

3d, R = 4-n-hexyl, 82 (79)%

3e, R = 4-t-Bu, 88 (80)%

3k, R = 4-NO,, 85 (75)%
31, R = 4-CN, 84 (81)%

3m, R = 4-PhC(0), 73 (72)%

Rz\/ A\ o
&
— CF

R' 3

3n, R' = 2-Me, R? = 4-OMe, 73 (71)%

=3-Cl, R? = 5- OMe 99 (99)%

o

3p, 71 (63)%
_O.

(@)
I

O %
o
o

3q,76 (70)%

3,67 (64)% O

‘ A CF3
L
R

3s,R=H, 79 (73)%

3t, R = 6-OMe, 70 (71)%

3u, R = 6-Br, 86 (84)%
o

/
N

3v, 85 (78)%
o

N
77 CFy
=

3w, 81 (70)%
o}

@)J\ Nca
P>
N

24° 1x 3x, 97%

250 1y 3y,z= o 72 (64)%
26 1z 32,72=5,77(68)% o
27" 1aa 3aa, 46(44)%

3ab, 44(43)%

“Reaction conditions: acid 1 (0.2 mmol), TMSCF; (2, 3.0 equiv),
TFAA (2.0 equiv), CsF (2.5 equiv), DMAP (2.5 equiv), PhOMe (2.0
mL), N,, 120 °C, 15 h. GC yields using dodecane as an internal
standard. The data in parentheses are the 1solated yields. *GC yield
using tridecane as an internal standard. “80 °C. “Product is a mixture
of 3w and its hydration 3w’. (See the SI) “F NMR vyield using 4-
fluorobenzoic acid as an internal standard. TMSCF3 (2, 1.0 equiv),
TFAA (1.5 equiv), 100 °C.

the current reaction system, facilitating the further function-
alization of the products via cross-coupling (Table 2, entries 9
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and 10). The electron-deficient substrates were also applicable
to this reaction. For example, benzoic acids bearing electron-
withdrawing groups such as NO,, CN, and PhC(O) worked
well, producing the trifluoromethylating products in high yields
(Table 2, entries 11—13). Under the present reaction
conditions, the di- and trisubstituted benzoic acids proved to
be the right substrate (Table 2, entries 14—17). It is worth
noting that piperic acid and trimethylgallic acid are important
medicinal intermediates, and they were readily trifluoromethy-
lated by the strategy (Table 2, entries 16 and 17). Good to
high yields of trifluoromethyl ketones were obtained from the
polycyclic and heterocyclic aromatic carboxylic acids (Table 2,
entries 18—26). Aliphatic carboxylic acids, exemplified as
stearic acid and oleic acid, were also applicable to this reaction,
although relatively low yields were given (Table 2, entries 27
and 28)."> The low yields might be ascribed to the relatively
high electron density of the carbonyl carbon, which is not
beneficial for the nucleophilic addition.

Interestingly, this reaction was applicable to the direct
modification of bioactive carboxylic acids, generating the
corresponding trifluoromethyl ketones (Scheme 2). For

Scheme 2. Modification of Bioactive Molecules”
Me
N
<y e
/O Me NM

O Oy CFs
&

From telmisartan

CF,
O )
Me Ph
From 3-methylflavone
-8-carboxylic acid
3ae, 87(80)%

From adapalin From probenecid

3ac, --(80)% 3ad, 96 (90)% 3af, - (54)%

“Reaction conditions: acid 1 (0.2 mmol), TMSCF; (2, 3.0 equiv),
TFAA (2.0 equiv), CsF (2.5 equiv), DMAP (2.5 equiv), PhOMe (2.0
mL), N,, 120 °C, 15 h. GC yields using dodecane as an internal
standard. The data in parentheses are the isolated yields.

example, adapalin, a clinical drug for skin disease, was readily
trifluoromethylated to produce 3ac in 80% yield. Probenecid is
used as an antigout drug and an antibiotic adjuvant. It also
worked well to give the target product 3ad in 90% yield under
the reaction conditions. 3-Methylflavone-8-carboxylic acid is a
clinical drug for the treatment of coronary heart disease. It was
also transformed into the expected product 3ae in 80% yield.
By this strategy, telmisartan, a kind of antihypertensive drug,
was also proved to be the right substrate (3af).

Practically, this reaction was scalable. As shown in Scheme 3,
we chose the drug probenecid as the model substrate and
carried out three trifluoromethylation reactions on a 1, 2, and 5
mmol scale. After work up and isolation through a SiO,
chromatographic column, high yields were obtained for all

TFAA (2 equiv)

1
CF,
CsF (2.5 equiv) o,

Scheme 3. Gram-Scale Experiments
— .8
DMAP (2.5 equiv) Ny

1
OH
o}
% + TMSCF;
¢}
PhOMe, 120 °C, N, 15 h

1ad 2 3ad

1 mmol (6 mL PhOMe)
2 mmol (10 mL PhOMe)
5 mmol (30 mL PhOMe)

3ad, 0.293 g, 91% (87%) yield
3ad, 0.580 g, 93% (86%) yield
3ad, 1.415 g, 85% (84%) yield
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three reactions. The results well demonstrated the practicality
of this new reaction in organic synthesis.

On the basis of previous literature, a plausible
mechanism for this trifluoromethylation reaction is proposed
in Scheme 4. Initially, the carboxylic acid 1 was activated in

12—14,16

Scheme 4. Proposed Mechanism

o
TFAA/DMAP o TMSCF3/CsF/DMAP )k
> CF;

Ar OH

Ar
TFA nucleophilic addition
and then elimination

in situ activation Ar
A

situ by TFAA to produce a mixing anhydride A.'® By the aid of
CsF and DMAP, the resulting mixing anhydride A underwent
nucleophilic addition with TMSCF;'*~'* and then elimination
to give the corresponding product 3.

In summary, we have disclosed an eflicient synthesis of the
value-added trifluoromethyl ketones from the environmental
benign and readily available carboxylic acids. The reaction
conditions were facile and relatively mild. A wide substrate
scope and high functional group tolerance were demonstrated.
The bioactive functional molecules such as adapalin,
probenecid, 3-methylflavone-8-carboxylic acid, and telmisartan
were also smoothly trifluoromethylated to produce the
corresponding products. In addition, this reaction is scalable.
These results showed the potential synthetic value of this new
reaction in organic synthesis.
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