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ABSTRACT: Hydroarylation of alkenes has been demonstrated to T e—
be an atom-economic approach to access functionalized arenes ‘\)I ‘\/i HH R
from easily accessible raw materials. Herein, we report a visible uv, TET Isc \O o

light-induced photocatalytic system that enables intramolecular |

hydroarylation of N-arylacrylamides with high S-exo-trig selectivity rer anergy transfer sondotria
through robust proton-coupled electron transfer (PCET). This ‘ v.s. — s
PCET electron transfer 5-exo-trig

mild hydroarylation protocol provides a straightforward entry to
structurally valuable oxindoles and complements previously

+H + HR1 | - R!
established 6-endo-trig cyclization by photochemical triplet energy PCETe ‘ i ;2 -, -H :z
transfer (TET). N N

this work
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ydrofunctionalization of alkenes is one of the most method the formation of high energy carbocations requires
important transformations in synthetic chemistry that strong acidic conditions and restricts the substrates to both
leads to reliable approaches for viable formation of C(sp*)—C electron-rich alkenes and arenes, the latter highly depends on

the use of noble metal catalysts and organometallic reagents or
their prefunctionalized precursors. In the past few decades,
radical addition couplings of alkenes by metal-hydride
hydrogen-atom transfer (MHHAT) have been found practical
applications in hydroarylation (Figure 1b),"* which are
typically initiated by cheap and low-toxicity metals such as
Fe, Mn, Co, etc.” More importantly, such reactions proceed

and C(sp®)—heteroatom bonds." Specifically, hydroarylation
has been traditionally achieved by the Friedel—Crafts process
with proton transfer and transition metal-mediated reductive
Heck-type couplings (RHC; Figure 1a).” While in the former

Transition metal-mediated hydroarylation:

R3 ¥

@ M— Ar R>j\( T under mild conditions, and thereby chemoselectivities are
RHC promnat,on AN generally well controlled with broader functional group

R tolerance. Remarkably, Gansdauer and co-workers have
Rs/j\ demonstrated titanocene-catalyzed regiodivergent radical

R . hydroarylations of epoxides, with even ready achievement of
MHHAT Ra>‘\/H o S'J\/H &ye enantioselective catalysis.”*

® g " R? ® Rz (LG=H.Xetc) Photochemical transformation provides a powerful and

versatile platform for molecule synthesis.” With light

, stimulation, triplet energy transfer (TET) from an appropriate

well known e RI[ i . sensitizer forms a highly activated triplet state (T1) of alkenes

© [y 7er ‘\/i sc ‘iI ‘\/i that initiates an alternative approach for hydroarylation of

N“~o alkenes (Figure 1c).° Within this field, photoinduced 67-

| electrocyclization” and [2 + 2] cycloaddition® have been well

Light-induced hydroarylation:

1 . . . . . .
‘ iR TET energy transfer 6-endo-trig established especially for intramolecular alkene functionaliza-
V.s. —_— V.s.
PCET electron transfer 5-exo-trig
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Figure 1. Hydroarylation methods.
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tion and hydroarylation. Recently, Smith et al. exploited the
interrupted [2 + 2] cycloaddition strategy and ingeniously
designed N-acryloyl indoles and related heterocycles,” which
lead to high yielding heterocycle functionalization/y-lactam
formation with the aid of sustainable visible light. During the
preparation of this paper, Che and co-workers reported
photoinduced hydroarylation and cyclization of alkenes with
a luminescent platinum(II) complex.'” Hence, the facile
formation of structurally diverse 3,4-dihydroquinolinones was
achieved from N-arylacrylamides, again, with 6-endo-trig
cyclization selectivity via 67-electrocyclization.

On the other hand, photodriven proton-coupled electron
transfer (PCET)"" has been demonstrated to be capable of
overcoming the activation barrier under mild conditions in
radial couplings of unsaturated compounds including imines
and carbonyls.'” However, hydroarylation of alkenes via the
PCET process has rarely been exploited.'” In view of the ready
formation and stability of the a carbon radical of N-arylamides
through radical addition to N-arylacrylamides,'* we envision
that the reductive PCET of N-arylacrylamides could occur to
form the same radical species, with further S5-exo-trig
cyclization followed by single-electron oxidation and deproto-
nation to access pharmaceutically significant oxindoles (Figure
1d). Although the same transformation has been realized by
hydrometalation under thermal conditions,®™ the milder
photocatalysis with S-exo-trig selectivity of N-arylacrylamides
remains challenging. Hence, to enable such a redox-neutral
hydroarylation of alkenes, an appropriate photocatalyst with
both strong reductive and oxidative potentials is required.
Moreover, the key challenge to realize it should be to find a
novel photocatalytic system in which the chemoselectivity can
be turned from 6-endo-trig cyclization selectivity via TET over
S-exo-trig selectivity via PCET.

The resultant oxindole skeleton is an important motif found
in numerous drugs and naturally occurring compounds.
Although transition-metal-catalyzed processes have been
utilized to enable direct formation of this structure from N-
arylacrylamides,'® to our knowledge, there are no examples
using mild visible-light-mediated PCET. To exploit the
feasibility of this method, we selected N-methyl-N-phenyl-
methacrylamide (1a) as the model substrate to test its
reactivity under irradiation with 35 W blue LED light (Table
1). Our systematic optimization of reaction conditions reveals
that the combinational use of Ir(dF(CF,)ppy),(dtbpy) ]PFq as
the catalyst, TfOH as the proton source, and LiBr as the
electron mediator is the key to success in the intramolecular 5-
exo-trig hydroarylation. The results from the screening of a
range of photocatalysts have verified our speculation that the
photocatalysts with both strong reductive and oxidative
potentials enable the S-exo-trig cyclization, where Ir(dF(CF;)-
ppy).(dtbpy)JPE¢ [PC1; E, ), (*P/P7), 1.21 V vs SCE; E,
(P/P7), —1.37 V vs SCE] and 4CzIPN [PC6; E,,, (*P/P"),
1.35 V vs SCE; E, , (P/P7), =1.21 V vs SCE]"® afforded the
target 1,3,3-trimethylindolin-2-one (2a) in 80% (entry 1) and
45% yields (entry 3), respectively. As a comparison, among
others, Ru(bpy);Cl, (PC2), fac-Ir(ppy); (PC3), Rose Bengal
(PC4), and Eosin Y (PCS) only generated the 3,4-
dihydroquinolinone product (entry 2). The strong Brensted
acid TfOH as a proton source was also critical to the
chemoselectivity. Other acids tested gave no more than 20%
yield of 2a with poor chemoselectivity (entries S and 6), where
a majority of 1a was recovered with hydrobromination product
generally formed in small amounts. The 5-exo-trig cyclization
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Table 1. Screening Reaction Conditions”

PC1 (2.0 mol%)
TfOH (1.0 equiv)
LiBr (30 mol%)

PhCI/H,0, rt, Ny, 24 h
35 W blue LED

"standard conditions"

1a 2a 3a
entry variation from standard conditions yield (%)b
1 no variation 80
2 PC2—PCS instead of PC1 ND (5-20%)
3 PC6 instead of PC1 45
4 no TfOH ND
S TFA or Et,0-BF; instead of TfOH 10, 20
6 AcOH or H;PO, instead of TfOH <5
7 no LiBr 19
8 TBAB, NaBr, or LiCl instead of LiBr 52, 57, 31
9 DCE, toluene, or MeOH as solvent 60, 66, 47
10 no H,0 32
11 no light or no PC1 ND
12 under air 44
SOy Im o e o
N ST N7 N7
T | P
A “Ru N

;- IrS
N: ‘ | \N/ \N/ | ‘ \N/ \N/ |
‘ AN ‘Bu = N »Z N
F % CFs

PC1: Ir(dF(CF3)ppy)z(dtbpy)IPFe
E12 (PIP) 121V
Eq2 (PIP)-1.37 V

PC2: Ru(bpy);Cl,
Eq2 ("PIP) 0.77 V
Eqjp (PIP7)-1.33V

PC3: fac-Ir(ppy)s
Eqp ("PIP)0.31V
Eqp (PIP7)-2.19 V

CO,Na c C
OOCL : ”=0
N
NaO o o O
Br Br
PC4: Rose Bengal PC5: Eosin Y PC6: 4CzIPN

Eq2 ("PIP7) 0.66 V
Eqp (PIP)-1.11V

Eq ("PIP7) 0.83V
Eqj2 (PIP) -1.06 V

E1p (*PIP) 135V
Eqpp (PIP) <121V

“The reaction was performed with 1a (0.2 mmol), photocatalyst
(PC, 2.0 mol %), TfOH (1.0 equiv), LiBr (30 mol %), H,O (20
equiv), and PhCl (0.2 M) under a N, atmosphere with 35 W blue
LEDs at room temperature (25—35 °C) for 24 h. “Isolated yields of
2a were given. The yield of 3a was determined by GC analysis using
dodecane as an internal standard and was given in parentheses.

product was not formed in the absence of TfOH (entry 4).
The yield in the absence of LiBr was dramatically declined to
19% (entry 7), and the majority of 1a was recovered. Among
others, TBAB, NaBr, and LiCl as additives were all given
moderate productivities (entry 8). Some white solid remained
during the reaction when it was performed without H,O,
which indicates that the role of H,O is to enhance the
solubility of the inorganic Bronsted acid and bromide additive
(entry 9). Finally, the results of control experiments suggest
that light stimulation, a photocatalyst, and an inert reaction
atmosphere are all essential (entries 11 and 12), which rules
out the hydroarylation process via the Friedel—Crafts
carbocation mechanism. Notably, the 3,4-dihydroquinolinone
product 3a was not formed in all cases using PC1 as the
photocatalyst.

We initially probed the substrate scope (Figure 2) of the
visible-light-induced intramolecular hydroarylation with vari-
ous subsituents on the benzene ring of aniline moiety (R').

https://doi.org/10.1021/acscatal.1c00649
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PC1 (2.0 mol%)
TfOH (1.0 equiv)

R3
R LiBr (30 mol%)
N /
R : i H,0 (20 equiv) N N
Z SN0 PhCI, rt, Ny, 24-96 h >
|, 35 W blue LED
R
1
Me t-Bu
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\ \ \
2a, 80%, 70% (6 mmol)  2b, 73% (>25:1) 2¢, 77% (>25:1)
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N
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\
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N
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o
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2s, 66% (7:1)

2y, 60% (>25:1)

2z, 50% (15:1)

2aa, 45% (>25:1)

s

2ab, 72% (>25:1)

| E CFs 4| PFs !
3 ! N 'B 1
- T A
R2 1, L WNF i
N ; E Ir\ i
o] + R ‘ N=
= |
N (6] N, N~y
R4 | i
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F Cl Br
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2w, 94% (>25:1)

o
3

2ac, 63% (>25: 1)

O

2ad, 30%" (1:1)

Figure 2. Substrate scope of the photochemical hydroarylation reactions (ma]or products and combinational yields were given and the ratio of
product 2 and 3 in parentheses was determined by GC analysis; *within 96 h; Pyield of 2ad).

Alkyl functionalities such as methyl (2b) and tert-butyl (2c)
slightly declined the yields to 73% and 77%, respectively.
Synthetically useful halogens including F, Cl, and Br were well
tolerated to afford the corresponding halo oxindoles (2d—2f)
in good yields (71—80% yields). While the electron-with-
drawing cyano group gave only a moderate yield of product 2g
(50% yield), the substrates bearing trifluoromethoxy (2h, 75%
yield) and phenoxy (2i, 82% yield) cyclized with excellent
productivities. As a comparison, ortho-substituted reactants
reduced the efficiency of the desired hydroarylation reaction
(2j, 48% yield, and 2k, 74% yield, respectively), in which the
reactants were not consumed even within 96 h. Expectedly, the
substrate with a meta substituent generated a mixture of two
isomer cyclization products with minimal control over
regioselectivity (2, 66% yield, rr = 2:1). We also explored
the generality of changing the N-methyl-N-phenylacrylamides
via diversification of the N-acyl fragment of the molecule. The
acrylamide with the oa-trifluoromethyl group transferred
completely with prolonged reaction time (79% yield). Other
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alkyls such as ethyl and propyl were also compatible, cyclizing
in good yields (2n, 75% yield and 20, 80% yield). Introducing
benzyl substituents in the a-position did not have obviously
deleterious effects on the reaction (2p, 90% yield, and 2q, 73%
yield). Cyclic alkenes, i.e., therein, an alkyl substituent was
added at the terminal end of the alkene, worked smoothly,
leading to the formation of structurally important spiro
oxindoles (2r, 65% yield, and 2s, 66% yield). Regarding the
functional group attached at the N atom, while free N-
phenylacrylamide featured very low reactivity, higher yields
were achieved when the bulky iso-propyl and cyclohexyl were
incorporated (2t, 90% yield and 2u, 82% yield, respectively).
The benzyl protecting group was well tolerated to give 2v in
70% vyield, which could transfer into NH oxindoles via
debenzylation. To our delight, the phenyl ether substrate
cyclized with almost quantitative yield (2w, 94% yield). The
glycine-derived N-phenylacrylamide also reacted with the
compatible ester group in moderate yield (2x, 70% yield).
Then, cyclic and diaryl N-acylamines were exploited to

https://doi.org/10.1021/acscatal.1c00649
ACS Catal. 2021, 11, 44224429
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smoothly produce polycyclic products (2y—2aa) and N-aryl
oxindoles (2aa—2ad) with yields ranging from 30% to 72%.
The robust synthetic capability of our photochemical system
for hydroarylation was further mirrored by the effective gram-
scale production of oxindoles (70% yield of 2a on 7 mmol
scale). Notably, with the oxindole major products, the
hydroarylation/cyclization also leads to the formation of 3,4-
dihydroquinolinone in many cases of substrate scope. More-
over, the 7-extension substrates such as 2-phenylacrylic amides
(R? = Ph) and cinnamamides (R? = Ph) led to the formation of
3,4-dihydroquinolinones as the major products because of the
superior electrocyclization reactivity.

Then, the reaction systems were found to tolerate the
substrates attached with some drug molecules including
ibuprofen (2ae), naproxen (2af), salicylic acid (2ag), and
estrone (2ah), with yields ranging from 48% to 80% (Figure 3,

o} 0 OMe
i
N\/\O N\/\O
2ae, 62% 2af, 48%

(from Naproxen)

(from lbuprofen)

o]
O OH
N\/\OJ\©
2ag, 50% 2ah, 80%

(from Salicylic acid) (from Estrone)

Me
0 standard
(.)souz Me _~ _ conditions Me
Me™ S OH ) PANHM: °©
Me (u e (iii) N\
1a| 2ai 80%
|v)NBS
F Me M
Me F B(OH), e
PO
N
\
2ak, 53% 2aj, 50%
progesterone receptor antagonist
HO
[0} standard Me
AlMes condltlons
_
o * PhNHMe o
(vi) (|||) N
\
1a| 2al, 50%
|
(vii)i DMP v|||) LiAIH,
CHO
Me
o o (N ) i
N
\
o
2am, 65% esermethole (X=NHMe, R=Me) 2an, 66%

physostlgmlne (X=NHMe, R=CONHMe)
physovenine (X=0, R=CONHMe)

Figure 3. Application of the photochemical hydroarylation reaction.

top). From commercially available Tiglic acid and N-
methylaniline, acrylamide lai was conveniently prepared that
cyclized to form oxindole 2ai in 80% yield under our standard
conditions. Further bromination and subsequent Suzuki—
Miyaura coupling afforded the oxindole product 2ak, a
progesterone receptor antagonist'’ (Figure 3, middle). More-
over, hydroxyl acrylamide 1al, derived from simple a-
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methylene-y-butyrolactone, underwent intramolecular hydro-
arylation to furnish synthetically important hydroxyl oxindole
2al. For example, it was readily transformed into formyl
oxindole 2am, a precursor compound of bioactive esermethole
and physostigmine'® using as a reversible inhibitor of
acetylcholinesterase used for the treatment of glaucoma and
Alzheimer’s diseases. Alternatively, reductive cyclization of 2al
gave furo[2,3-b]indoline 2an, which can further deliver
physovenine via late-stage modification'” (Figure 3, bottom).

While our PC1/TfOH/LiBr catalytic system enabled
exclusive S-exo-trig selectivity for all of the above reactants,
N-(4-methoxyphenyl)-N-methylmethacrylamide (lao) af-
forded oxindole 2a0 as the major product along with formation
of the dihydroquinolinone product 3ao via 6-endo-trig
cyclization under the standard reaction conditions (76%
yield, rr = 7.1:1). Notably, the ratio of 3a0 was enhanced in
the absence of the LiBr additive (rr = 4.5:1), and the formation
of 2a0 was completely suppressed when bromide and acid
were both removed (Figure 4a). The results of cyano and

eO. MeO. MeO
X — o CLL
N~ 0 N N"0
| \ |

2ao 3ao
standard conditions: 76% (7.1 : 1)
w/o LiBr: 78% (4.5 : 1)
w/o LiBr and TfOH: 52% (< 1: 20)

1ao

oL —— O (Lo o
N"0 N0 N

| I \

1ap 3ap 2ap, ND

standard conditions: 75%
w/o LiBr and TfOH: 85%

(d)

——y=661.5x+1

[——y=13.9x+1

=
1.00 y’—"‘/ﬁ

.DOODU 0.0005 0.0010 0.0015 0.0020 0.0025
1a+TfOH (M in DCE)

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
LiBr (M in acetone)

) T ——y=1267x+1
——y=413xr

/./

70,0000 0.0005 0.0010 0.0015 0.0020 0.0025
1ao (Min DCE)

1.0 D

0.8
0.00000 0.00025 0.00050 0.00075 0.00100 0.00125
1ap (Min DCE)

Figure 4. Formation of benzodihydroquinolinones and Stern—Volmer
quenching experiments.

chloro substrates in the absence of LiBr and TfOH (2e, 2g)
were also similar to those of 1ao (see SI for details). Moreover,
with the PC1 and visible light treatment, the naphthylamine
substrate proceeded exclusively via 6-endo-trig cyclization to
afford benzodihydroquinolinone 3ap in good yields even with
bromide and acid additive (Figure 4b). These results can be
attributed to the competitive electron transfer of bromide and
energy transfer of substrates with the excited Ir complex. The
Stern—Volmer quenching experiments indicate that LiBr
quenched apparently the fluorescence emission of PC1 (Kgy

https://doi.org/10.1021/acscatal.1c00649
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= 661, Figure 4c), while normal substrates such as 1a did not
feature such an effect (Figure 4d). Mechanistically, the
bromide additive may serve as the initial reductive quencher
[E, )" (Br*/Br~), 0.80 V vs SCE in dimethoxyethane]™ to
the excited iridium(III) complex [*PC1; E,,, (*P/P7), 1.21
V] to generate iridium(II) with high reductive potential [E,
(P/P7), —1.37 V]. In the case of lao, however, the
fluorescence quenching effect by energy transfer from *PC1
was observed (Kgy = 41, Figure 4e) that led to considerable
formation of dihydroquinolinone product. The naphthylamine
substrate exhibited the most quenching effect (Kgy = 1267,
Figure 4f), which resulted in absolutely advantaged energy
transfer to generate the 6-endo-trig cyclization product.

The H/D exchange experiments show that no D
incorporation of the cyclized product was observed when
DS-labeled N-acylaniline (Ds-1a) was employed (Figure Sa)

standard H
condmons T AN
Dy (o] no D incorporation (a)
Z N
\
D5-1a D4-2a, 81%
standard H
Condltlons ™
o 76% D incorporation (b)
with D,O N
\
1a D1-2a + 2a, 80%
standard
condmons
1a + D5-1a O + D4f (c)
W|th|n 6h
(kulkp=1.0)

2a D4-2a
32% yield (1:1)

Figure S. H/D exchange and KIE experiments.

and the addition of D,O led to 76% D incorporation in the
newly formed methyl group (Figure Sb), indicating a PCET
process in the initial step. The competitive kinetic experiments
with 1a and Ds-1a under the standard conditions determined a
kinetic isotopic effect (KIE) of ky/kp = 1.0 (Figure Sc), thus
revealing the C—H scission of the aniline moiety to occur after
the rate-determining step.

During the studies on optimizing reaction conditions, we
observed the photochemical formation of a-bromoamide 4a,
which could be enhanced by the addition of stoichiometric
LiBr within reduced reaction time (Figure 6a). This kind of
compound could transform into the final cyclized product 2a
under previously reported photocatalytic systems”' as well as
our standard conditions (Figure 6b). In comparison, while the
N-methophenyl a-bromoamide 4b afforded only S-exo-trig
cyclization product 2ao (Figure 6¢), the naphthyl variant Sc
furnished a mixture of benzoxindole 2ap and benzodihydro-
quinolinone 3ap (Figure 6d). These results suggest a reversible
radical bromination process. While the results of radical trap
experiments also revealed a radical mechanism, the light-on/off
experiments rule out a free radical chain pathway (see SI).

While hydroarylation reaction via 6z-electrocyclization
under photoirradiation has been well established, based on
the above experimental results, we proposed a tentative
reaction mechanism of our intramolecular hydroarylation
reaction with S-exo-trig selectivity (Figure 7). Initially, the
photosensitizer I'" complex (PC1) absorbs photons to form
highly oxidative *Ir"", which is reduced by the bromide anion

4426

standard conditions

(a)

By

4a, 15%
ND (w/o PC1 or light)

W|th|n 5h

O

1a

standard conditions

i N

\

¢]

2a (65% yield)

iBr standard conditions ~ MeO
N

\

o (c)

4b 2a0 (50% yield)

Br
O standard conditions ‘
N N
\ \
4c

2ap

standard conditions: 53% yleld, m=1.6
w/o LiBr and TfOH: 53% vyield, rr = 1:5

i @

Figure 6. Productivity of a-bromoamides.

@KLﬁﬁﬁ

[1aH]*

blue light

*lr“l

7)1

5a

Figure 7. Possible reaction mechanism.

to give a highly reductive Ir"" species and a bromo radical.””
Simultaneously, with the strong Brensted acid treatment, la
was coupled with a proton to form a [1aH]" ion. Then, single
electron transfer from Ir'' to [1aH]" generates the a-radical
amide A,”* which could couple with the bromo radical to
produce the side product a-bromoamide Sa. In that case, Sa
could also decompose to A by reductive bromo elimination.
Subsequently, radical cyclization of A occurs to deliver
intermediate B."* Finally, B is oxidized by the highly oxidative
*I'" complex followed by deprotonation to produce the
oxindole product 2a.

In summary, we have developed a mild visible-light-induced
photoredox neutral hydroarylation reaction of N-arylacryla-
mides for the synthesis of oxindoles. The present protocol
provides a straightforward and mild entry to pharmaceutically
important oxindoles with a broad range of compatible
functionalities. Beyond the well established photoinduced 67
electrocyclization of this reactant, the present photocatalytic
system combined with Brensted acid and bromide additive
features high S-exo-trig selectivity through proton-coupled
electron transfer (PCET). LiBr proved to be critical in such a
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PCET process that probably reduces the excited photocatalyst
to form highly reductive Ir" species. The novel photoredox
system enables the PCET process of electron-deficient alkenes
that may have broad applications in hydrofunctionalization
reactions of alkenes, although it still faces the scope issues
raised from the strong acidic conditions.
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