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There have been numerous reports on ferromagnetic 

interactions in genuine organic radical compounds in pursuit of 

magnetism-based functional materials.
1
 For further development 

of switching, sensing, memory, display and other devices, metal-

organic solids are of increasing interest for high-TC materials and 

multi-functionality.
2
 As an available prescription for high-spin 

organic compounds, the meta-phenylene bridge is well-known to 

be a robust ferromagnetic coupler, as supported by the extensive 

studies on high-spin polycarbenes, -nitrenes, and -radicals
3
 

(including di- and trinitroxide radicals
4
). Spin-transition behavior 

in biphenyl-3,5-diyl bis(tert-butyl nitroxide) derivatives has been 

reported,
5
 where a meta-phenylene-bridged biradical core is 

utilized as a stable triplet building block (Scheme 1, A).  

Pyrimidines seem to be another promising candidate for a 

ferromagnetic coupler,
6
 as expected from the analogy of meta-

phenylenes and the spin-polarization mechanism.
3
 Actually, 

pyrimidines have a highly directive nature of the coordination 

bonds (Scheme 1, B), attracting much attention to researchers in 

supramolecular chemistry including metal-organic frameworks 

(MOFs), porous materials
7
 and molecular grids.

8
 Though the role 

of couplers has been proven to depend on the coordination 

structures and the / nature of the transition-metal spins,
9
 there 

have been many reports where pyrimidines serve as a 

ferromagnetic coupler.
6,10

  

Nitroxide groups can ligate various metal ions.
11

 Combining 

the two above strategies (Scheme 1, C), now we propose a target 

compound, pyrimidine-4,6-diyl bis(tert-butyl nitroxide) 

(abbreviated as pmbNO hereafter; see Scheme 2), as a potential 

paramagnetic building block for multifunctional materials in 

MOFs. Furthermore, pmbNO may afford strong exchange 

coupling at the metal-organic bond, because several Cu
2+

 and 

Ni
2+

 chelates with tert-butyl 2-pyridyl nitroxide derivatives 

showed strong metal-radical exchange interaction as large as the 

order of room temperature.
12,13

 Thus, we have started the 

preparation and characterization of pmbNO and applied pmbNO 

to a prototype Cu-organic solid. The motivation of this study is to 

clarify (1) whether pmbNO possesses a ground high-spin state 

and (2) works as a rigid bridge.  

 

 
 
Scheme 1. Molecular design strategy.  
 

Before preparation of pmbNO, the molecular design should be 

assessed by the theoretical treatment. The ground spin-

multiplicity of meta-phenylene-bridged oligo-/polyradicals can 

be predicted by several ways,
14,15

 and the spin-polarization theory 

is the most versatile when the spin sources are diphenylcarbenes 

and triphenylmethyls.
3
 The polarized spin densities on the carbon 

2pz orbitals are alternating in an up-down-up-down-… manner. 

However, in the present compound, the heteroatoms (nitrogen) 

are present at the spin center and in the aromatic ring, and the 
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We synthesized pyrimidine-4,6-diyl bis(tert-butyl nitroxide) (pmbNO), and characterized as a 

biradical by means of ESR spectroscopy. The zero-field splitting parameters were |D|/hc = 

2.5210
-2

 cm
-1

 and |E|/hc = 2.3410
-3

 cm
-1

 in frozen toluene at 100 K. Magnetic study clarified 

the presence of intramolecular ferromagnetic coupling with 2J/kB = +18.5(5) K in frozen 

toluene-ethanol. DFT calculation supports the ground triplet state of pmbNO. The reaction of 

pmbNO with Cu(hfac)2 gave [Cu3(pmbNO)2(hfac)4], and the structure was determined by X-

ray crystallographic analysis. Though the ligand was reduced to be an anion radical, pmbNO is 

confirmed to work as a rigid bridge, and the nitroxide oxygen atoms can ligate the metal ions. 
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2 
singly-occupied molecular orbitals (SOMOs) are somewhat 

perturbed from those of the hydrocarbons.  

We performed the density-functional theory (DFT) molecular 

orbital (MO) calculation for pmbNO in Gaussian03.
16 

The SCF 

energies of the singlet and triplet states were calculated at the 

UB3LYP/6-311+G(d,p)//UB3LYP/6-31G(d)
 
level.

17
 We obtained 

EBS = –838.887669739 a.u. with <S
2
>BS = 0.0692 and ET = –

838.888916939 a.u. with <S
2
>T = 2.0005, where BS stands for 

the broken symmetry singlet state
18

 and T for the triplet state. The 

spin density map of the singlet and triplet states is shown in Fig. 

1, which approximately demonstrates the two SOMOs. The 

coupling parameter is estimated according to Yamaguchi’s 

equation:
19

 J = (EBS – ET)/(<S
2
>T – <S

2
>BS), thus giving 2J/kB = 

+408 K for pmbNO; namely, the pmbNO is a ground triplet 

molecule. The optimized molecular structure was highly planar. 

It is well-known that the ferromagnetic coupling in such meta-

phenylene biradicals is sensitively reduced upon the -

conjugation breakdown.
20

 The calculated J value may be 

overestimated against the experimental results.  

 
(a) (b)  

 

 

 

 

Figure 1. DFT calculation results of spin density for (a) the ground triplet and 

(b) the excited singlet pmbNO. Light and dark lobes stand for positive and 

negative spin densities, respectively.  
 

When the radical centers are nitroxides, the spin is similarly 

polarized throughout the adjacent benzene ring, and the spin 

multiplicity can be qualitatively evaluated as if the N-O group 

were a methyl or carbene.
4,21,22

 Several experiments support that 

the spin-polarization scheme is valid for pyridine and 

azaaromatics.
22,23

 As Fig. 1a displays, the spin-polarization 

mechanism seems to hold also for the pyrimidine ring.  

 

 
 
Scheme 2. Synthesis of pmbNO.   
 

Synthetic route to pmbNO is shown in Scheme 2. A precursor 

4,6-dibromopyrimidine was prepared according to the procedure 

reported by Schomaker and Delia,
24

 and N-tert-

butylhydroxylamino groups were introduced at the 4- and 6- 

positions by way of the conventional organolithium method,
13

 

giving pmbNOH.
25

 The oxidation of pmbNOH in the presence of 

excess Ag2O gave pmbNO as dark greenish brown oil.
26

 

Purification through column chromatography (silica or alumina) 

was unsuccessful. tert-Butyl pyridyl nitroxides are known to be 

unisolable,
12c,27

 and  it is acceptable that the isolation of pmbNO 

would be difficult.  

The X-band ESR spectrum of pmbNO showed a broad line 

with Bp-p = 2.4 mT (the peak-to-peak linewidth) at g = 2.0070 

(in toluene at room temperature), being typical of exchange-

coupled bisnitroxide compounds.
5
 A fine structure was found in a 

frozen solution (Fig. 2). A half-field signal also appeared, which 

can be assigned to the transition of |ms| = 2. The zero-field 

splitting parameters |D| and |E| were determined from 

simulation,
28

 giving |D|/hc = 2.5210
–2

 cm
-1

 and |E|/hc = 

2.3410
–3

 cm
-1

 with gx = 2.0085, gy = 2.0035, and gz = 2.0059.  

The spin-spin distance is estimated to be r = 4.68 Å from the 

point-dipole approximation.
29

 This distance suggests that the 

C(pyrimidine)–N(nitroxide) single bonds would have an 

anti,anti-configuration with respect to the pyrimidine N and 

nitroxide O atoms. It is supported by the geometry optimization 

in the MO calculation (Fig. 1).  

 

 

Figure 2. X-Band ESR spectra in a frozen solution of pmbNO (toluene, 100 

K, c = ca. 510-4 mol/L). A central signal at 335 mT is attributed to doublet 

impurity. A simulated spectrum is also shown. Inset shows the half-field 

absorption.   
 
 

 

Figure 3. (a) Temperature-dependence of mT at 5000 Oe and (b) field-

dependence of magnetization at 1.8 K for pmbNO in a frozen solution of 1/1 

toluene-ethanol. Solid lines are theoretical fits to the Bleaney-Bowers 

equation for mT and the Curie-Weiss analysis for m
-1 in (a). Two solid lines 

stand for the Brillouin functions with S = 1/2 and 1 in (b). See the text for the 

equations and parameters. 

 

The ground spin multiplicity of pmbNO was studied by means 

of magnetometry, but the intermolecular interaction disturbed the 

analysis of intramolecular one like other organic radical 

solids.
5,11e

 To elucidate the ground spin state of an isolated 

pmbNO molecule, we measured the magnetic properties in a 1/1 

toluene-ethanol solution on a SQUID magnetometer. The 

solution was diluted to be 5.010
–3

 mol/L. As Fig. 3a shows, the 

mT value increased on cooling. The data were analyzed on the 

empirical Curie-Weiss equation (m = C/(T – ); C and  stand 

for the Curie and Weiss constants, respectively). Owing to the 

inaccuracy in sampling the diluted solution, the plots were 

normalized from a concentration scaling factor to fix C = 0.755 

cm
3
 K mol

-1
, which is a theoretical value of two doublets with g = 

2.007. Note that it hardly affects the estimation of the 

intramolecular exchange coupling.
30

 The Weiss constant was 



  

 

 

3 
optimized to be +2.8(1) K. The positive  implies the presence of 

ferromagnetic coupling. The magnetic coupling parameter was 

estimated from the Bleaney-Bowers equation (Eq. 1)
31

 based on 

the singlet-triplet model, where the energy gap is defined to be 2J 

(the spin-Hamiltonian H = –2JS1•S2). The parameter was 

optimized as 2J/kB = +18.5(5) K with the triplet ground state. The 

calculated curve well reproduced the experimental data.  

 

 (Eq.1) 

 
Fig. 3b shows the magnetization curve. The data obeyed the S 

= 1 Brillouin function (Eq. 2)
32

 rather than the two times S = 1/2 

functions, indicating that the specimen practically is a triplet 

molecule at 1.8 K. This finding is consistent with the m(T) result.  

 

 (Eq.2) 

 
Finally, attempts to prepare various complexes using pmbNO 

are stated. We have eventually isolated a 2/3 copper-pmbNO 

adduct from the complexation with [Cu(hfac)2]
26

 (hfac = 

1,1,1,5,5,5-hexafluoropentane-2,4-dionate). The X-ray 

crystallographic study clarified the formula of 

[Cu3(pmbNO)2(hfac)4]•(C6H14)x (Fig. 4). Considerable disorder of 

crystal solvent molecules (hexane) gave an unsatisfactory final R 

factor (R1 (I>2(I)) = 0.084) even at 90 K, but the molecular 

structure is unequivocally determined, where the pmbNO works 

as a bridging ligand. In contrast to the pristine pmbNO, the 

pmbNO moiety in the complex has a syn,syn-configuration 

owing to the five-membered chelate structure. The Cu3(pmbNO)2 

core is highly planar. The oxygen atoms (O1 and O2) ligate the 

metal ions, and the pyrimidine ring plays the role of a 2-bridge 

having strongly 120°-directing nature, as expected from Scheme 

1.  

 

 
 
Figure 4. Molecular structure of [Cu3(pmbNO)2(hfac)4]. The thermal 

ellipsoids are drawn at the 30% probability level. Hydrogen atoms are 

omitted for clarity. 
 

The valence of the Cu ions is suggested to be +2 from the 

coordination structures (square plane on Cu1 and octahedron on 

Cu2), and that of the pmbNO moiety to be –1. The O1-N2 

distance was 1.362(8) Å, much longer than the typical nitroxide 

O-N distances, 1.28–1.32 Å.
13a

 On the other hand, the O2-N4 

distance was 1.293(7) Å, which is normal for a nitroxide group. 

This finding indicates the localization of the spin and anion in 

pmbNO
–
. Reduction mechanism of biradical pmbNO is unclear at 

present, but disproportionation of two radicals to a pair of 

reduced and oxidized forms in the presence of a catalytic acid is 

assumed.
33

 The present complex can be regarded as a trapping 

product with a decomposed intermediate.
34

   

In summary, we successfully prepared and characterized 

pmbNO. It is an oily product unfortunately, but the ESR and 

SQUID results afforded the evidence of a triplet biradical. The 

preliminary complexation gave [Cu3(pmbNO)2(hfac)4], where the 

oxygen atoms can ligate the metal ions and at the same time 

pyrimidine plays the role of a directive 2-bridge. Applying 

pmbNO as a building block to magnet-based functional materials 

and MOFs is feasible. However, it is also suggested that 

stabilizing substituents would be better introduced to pmbNO.  
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