Original Russian Text Copyright @ 2001 by Panasyuk, Mel'nikova, Tselinskii. ## _____SHORT COMMUNICATIONS ## Reaction of Substituted Benzofuroxanes with Styrene* ## P. M. Panasyuk, S. F. Mel'nikova, and I. V. Tselinskii St. Petersburg State Technological Institute, St. Petersburg, 198013 Russia Received November 15, 2000 Reactions of benzofuroxanes with nucleophiles (Beirut reaction) is a procedure providing quinoxaline-*N*, *N*'-dioxides. In this reaction take part imines [1], enamines [2], enolate-anions [3], phenols [4], and also olefins with a less active bond than that in enamines [5]. The least studied are the latter reactions. At the same time the availability of olefins is very attractive for preparation of quinoxline-*N*, *N*'-dioxides derivatives. We established that 6(7)-R-3-phenylquinoxaline-N,N'-dioxides **IIa-e** form in 38-65% yields in reac- $$\begin{array}{c} \begin{array}{c} O \\ O \\ O \end{array} \\ \begin{array}{c} \\ \begin{array}{c} O \\ O \end{array} \\$$ R = OMe(a), Me(b), Cl(c), COOMe(d), NO₂(e). tion of 5-substituted benzofuroxanes **Ia-e** with styrene in a boiling 2-propanol. The duration of the process decreased with growing electron-withdrawing character of the R substituent. For instance, 5-methoxybenzofuroxane (**Ha**) was not fully consumed within 7 days whereas the reaction between 5-nitrobenzofuroxane **He** completed in 6–8 h. The yield of 6(7)-R-3-phenylquinoxaline-*N*,*N*'-dioxide also grew with increasing electron-acceptor character of the substituent. Apparently the reaction involved intermediate formation of dihydoquinoxaline-N,N'-dioxide **A** as evidenced the red color of the reaction mixture characteristic of these compounds [6]. Intermediate **A** is oxidized by the second benzofuroxane molecule affording aromatic product **II**. Therewith the benzofuroxane was reduced into o-benzoquinone dioxime (**III**) that was isolated from the reaction mixture and Yields and characteristics of compounds synthesized | Compd. | Yield, | Isomers
ratio | | ¹ H NMR spectrum of the main isomer, δ, ppm | | | | | | | |---------------------------------|----------------------------|--------------------------------------|---|--|---|--------------------------------------|---|-----|--|--| | | % | | | H^3 , s | H ⁵⁽⁸⁾ , d | H ⁷⁽⁶⁾ , d | $H^{8(5)}$, | d | Ph, m | R, s | | IIa
IIb
IIc
IId
IIe | 40
27
46
63
65 | | 12:88
31:69
100:0
15:85
43:57 | 8.84
8.78
8.94
8.97
9.17 | 7.77
8.22
8.46
8.95
9.08 | 8.44
8.38
8.54
8.65
8.71 | 7.57
7.76
8.03
8.41
8.69 | 5 | 7.95, 7.55
7.97, 7.54
7.98, 7.57
8.00, 7.58
8.01, 7.59 | 3.99
2.55
-
3.98 | | Compd
no. | | C | Found, % | N | Formula | | C | Cal | lculated, % | N | | IIa
IIb
IIc
IId
IIe | 71
61
64 | 7.16
1.42
1.66
4.86
9.37 | 4.51
4.79
3.33
4.08
3.20 | 10.44
11.10
10.27
9.46
14.84 | $\begin{array}{c} C_{15}H_{12}N_2O_3\\ C_{15}H_{12}N_2O_2\\ C_{14}H_9ClN_2O_2\\ C_{16}H_{12}N_2O_4\\ C_{14}H_9N_3O_4 \end{array}$ | | 67.24
71.47
62.01
65.12
59.78 | | 4.75
4.90
3.54
4.18
3.60 | 10.47
11.11
10.31
9.52
14.86 | The study was carried out under financial support of the Russian Foundation for Basic Research (grant no. 99-03-33085a). identified by TLC comparing it with an authentic sample specially prepared by reduction of the corresponding benzofuroxane with hydroxylamine [7]. The capability of benzofuroxanes to reduce the aromatic structure of dihydroazines while converting into ortho-benzoquinone dioximes is well known [8]. The composition and structure of compounds obtained was confirmed by elemental analysis, ¹H NMR and mass spectra. In the mass spectra of 6(7)-R-3-phenylquinoxaline-*N*,*N*'-dioxides the molecular ion peaks are the strongest (100%). Besides in all spectra are observed peaks [*M*–16]⁺ and [*M*–32]⁺ corresponding to successive loss of two oxygen atoms as is characteristic for N-oxides of azines [9]. As show the ${}^{1}H$ NMR spectra the obtained 6(7)-R-3-phenylquinoxaline-N,N'-dioxides save compound **IIb** (R = Cl) are isomer mixtures. It is not surprising since benzofuroxanes are prone to tautomerism in solutions [10]. However the data available are not sufficient for establishing the structure of the main isomer. The isomer ratio evaluated by integral intensity of signals from protons in 3 position are given in the table. A solution of 0.01 mol of benzofuroxane **Ia-e** [11] and 0.006 mol of styrene in 40 ml of 2-propanol was heated at reflux till complete consumption of the initial benzofuroxane (TLC monitoring). On cooling the reaction mixture was evaporated to ~10 ml volume and diluted with 20 ml of ether. The separated precipitate was filtered off and recrystalized from 2-propanol. Thus were obtained quinoxaline-*N*,*N*'-dioxides **IIa-e**. The filtrate was evaporated to dryness, the solid residue was treated with cold 5% solution of NaOH, the solution obtained was filtered again, and the filtrate was acidified with concn. HCl till weakly acidic pH. The precipitated benzoquinone dioxime **III** was filtered off and dried. 1 H NMR spectra were recorded on Bruker AC-300 instrument in DMSO- d_{6} , internal reference DMSO. Mass spectra were measured on mass spectrometer Varian CH-6 (ionizing voltage 70 V). TLC was performed on Silufol UV-254 plates, eluent chloroform. ## REFERENCES - 1. French Patent, 1521907, 1967; *Chem. Abstr.*, 1972, vol. 77, 8854a. - 2. Muffarij, N.A., Haddadin, M.J., Issidorides, C.H., McFarland, J.W., and Johnston, J.D., *J. Chem. Soc.*, *Perkin Trans. I*, 1972, no. 7, pp. 965–967. - 3. Issidorides, C.H. and Haddadin, M.J., *J. Org. Chem.*, 1966, vol. 31, no. 12, pp. 4067–4068. - 4. Abu El-Haj, M.J., Dominy, B.W., and Johnston, J.D., *J. Org. Chem.*, 1972, vol. 37, no. 4, pp. 589–593. - 5. Sakamoto, M., Shibano, M., and Tomimatsu, Y., *J. Pharm. Soc. Jpn.*, 1973, vol. 93, pp. 1643–1646. - McFarland, J.W., *J. Org. Chem.*, 1971, vol. 36, no. 13, pp. 1842–1843. - 7. Zincke, T. and Schwarz, P., *Lieb. Ann.*, 1899, vol. 307, pp. 28–49. - 8. Paetzold, F., Zevner, F., Heyer, T., and Niclas, H.J., *Synth. Commun.*, 1992, vol. 22, no. 2, pp. 281–288. - 9. Katritzky, A.R. and Lagowski, J.M., *Chemistry of Heterocyclic N-Oxides*, New York: Acad. Press, 1971, p. 17. - 10. Mallory, F.B., Mannat, S.L., and Wood, C.S., *J. Am. Chem. Soc.*, 1965, vol. 87, no. 23, pp. 5433–5438. - 11. Forster, M.O. and Barker, M.F., *J. Chem. Soc.*, 1913, vol. 103, pp. 1918–1923.