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A diastereoselective carbohydrate-based synthesis of the oxaspirolactone sawaranospirolide C was
accomplished by utilizing one-pot cascade of acetonide deprotection/hemiacetal formation/spirolac-
tonization as the key step.

� 2021 Elsevier Ltd. All rights reserved.
Introduction

The family of sawaranospirolides A-D (1–4) has been isolated
by Hasegawa et al. from the heartwood of the Japanese ‘Sawara’
tree Chamaecyparis pisifera [1,2]. The structure and relative stereo-
chemistry of sawaranospirolides were established based on exten-
sive spectroscopic analysis and the absolute configuration was
further confirmed by chemical conversion and degradation. Archi-
tecturally, sawaranospirolides family possess unique [6,5]-oxas-
pirolactone skeleton bearing a highly oxygenated
tetrahydropyran ring system and a c-butyrolactone. These natu-
rally occurring oxaspirolactones [3] contain five contiguous stere-
ogenic centers at C3-C7 and are epimeric with one another at C-
3 or C-5.

In 2010, the first synthesis of ent-sawaranospirolides C and D
was completed by Robertson and co-workers [4]. The absolute
configurations were also confirmed by the synthesis and illustrated
in Figure 1. The utilization of m-CPBA mediated oxidative spirolac-
tonization enable the successful [6,5]-oxaspirolactone formation
and guarantee the total synthesis of ent-sawaranospirolide C and
D. Although much research has been conducted to date, the
biological activities of sawaranospirolides still remain undeter-
mined. As part of our continuing interest in the synthesis of
bioactive spiroacetals from naturally abundant carbohydrates, [5]
we envisioned that the stereoselective synthesis of sawara-
nospirolides A and C could be derived from the simple and natural

L-sorbose, and the advantage of the existing chirality transfer will
be elaborated in the rapid asymmetric synthesis.

Results and discussion

Structurally, sawaranospirolides A and C share the same [6,5]-
oxaspirolactone backbone, except for the different stereochemistry
of p-hydroxyphenyl group at C-3 position of the c-butyrolactone
ring. Structural comparison indicated that the similarities between
the natural carbohydrate, L-sorbose and the highly oxygenated
tetrahydropyran ring system (C4-C8) of sawaranospirolides A and
C. Accordingly, we hypothesized that sawaranospirolides A and C
could be prepared from the same precursor, L-sorbose.

Retrosynthetic analysis of sawaranospirolides A (1) and C (3) is
summarized in Scheme 1. We envisaged that sawaranospirolides A
and C could be generated from multi-functionalized a,b-unsatu-
rated ester 6 via hydrogenation, acetonide deprotection, hemiac-
etal formation, and spirolactonization cascade (Scheme 1). The
key precursor, a,b-unsaturated ester 6, which contains three
desired contiguous stereogenic hydroxyl groups, could be readily
accessible from 2,3,4,6-Di-O-isopropylidene-L-sorbofuranose 7 via
multiple functional group transformations.

Subsequently, the synthesis of the key precursor 6 from L-sor-
bose is outlined in Scheme 2. The known aldehyde 8 was easily
obtained from L-sorbose in excellent yield according to a known
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Fig. 1. Structures of Sawaranospirolides A–D.
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procedure [6,7]. Aryllithium reagent, which is in situ generated
from 4-benzyloxybromobenzene and n-BuLi, was added to alde-
hyde 8 to give diastereomeric alcohol 9 as an inseparable mixture.
[8] However, in the case of the nucleophilic addition by Grignard
reagent, which is also derived from 4-benzyloxybromobenzene,
lower yield (<40%) was obtained. Dess-Martin oxidation of the
resulting secondary alcohol of 9 gave the corresponding ketone
10 in 71% yield over three steps. Homologation of the ketone 10
by Horner-Wadsworth-Emmons [9] reaction with triethyl phos-
phonoacetate in the presence of a variety of bases (eg. Ba(OH)2,
DBU, t-BuOK or LiHMDS) were explored; however, the desired a,
b-unsaturated ester 6 was formed in a very low yield and signifi-
cant substrate decomposition was observed. Alternatively, when
the ketone 10 was subjected to Wittig olefination with, the corre-
sponding a,b-unsaturated ester 6 was successfully synthesized in
69% isolated yield (Table 1). Due to the low reactivity of this stabi-
lized ylide prolonged heating up to 125 �C for several days was
necessary, during which considerable decomposition occurred.
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The stereochemistry of ester 6 was confirmed on the basis of its
NOESY correlations.

With the key precursor 6 in hand, we then focused on the final
stage of the total synthesis of sawaranospirolides A (1) and C (3)
according to the retrosynthetic design. Hydrogenation of a,b-
unsaturated ester 6 over palladium on activated charcoal (Pd/C,
10%) under high pressure hydrogen atmosphere (4 atm) removed
the benzyl group and reduced the conjugate double bond to afford
the saturated ester 11 along with significant quantities of a bypro-
duct 12, which is the partial hydrolysis product of the acetonide
group. [10] It was noteworthy that 3R isomer of the saturated ester
was obtained as a single diastereomer. The excellent selectivity
probably originated from the steric interactions of two adjacent
bulky cyclic acetonides. Facial selective hydrogenation of the dou-
ble bond proceeded only on the less hindered face of the a, b-
unsaturated ester to give exclusively 3R isomer.

Finally, one-pot acetonide deprotection/ hemiacetal formation /
spirolactonization was achieved with 70% TFA via spirohemiacetal
intermediates (5a-b), delivering the [6,5]-oxaspirolactone sawara-
nospirolide C (3) in 67% overall yield (Scheme 3). The optical rota-
tion and spectroscopic data (1H and 13C NMR, HRMS) of our
synthetic sample were in good agreement with natural product
sawaranospirolide C [1,11].

In view of the structural similarities between sawara-
nospirolides A and C, we designed the divergent synthesis of both
natural products from the same precursor 6. Results were detailed
in Table 2. We began our investigation by the reduction of 6 with
metal hydride species (e.g. NaBH4-NiCl2, [12] NaBH4-CuCl2 and
Mg-MeOH [13], entries 5–6, Table 2), however only complex mix-
ture was obtained or low conversion was observed with recovered
starting materials. Other reaction conditions were also attempted,
such as hydosilylation, Crabtree’s reduction, and Stryker’s reduc-
tion [Ph3PCuH]6, [14] no desired product was observed. (entries
7–8, Table 2)

Since the previous synthetic strategy for sawaranospirolide A
was failed, we then revised our plan at this stage. The conjugate
addition of organometallic reagents to electron-deficient alkenes
might be a possible solution due to its high electrophilic reactivity.
Robertson and co-workers reported the synthesis of sawara-
nospirolides with the similar synthetic strategy to introduce the
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Scheme 2. Synthesis of 6. Reagents and conditions: (a) Ref 6; (b) 4-benzyloxybromobenzene, n-BuLi, then 8, THF, �78 �C; (c) Dess-Martin periodinane, NaHCO3, DCM, 71% over
three steps; (d) See Table 1, Ph3P = CHCO2Me, Toluene, 125 �C, 110 h, 69%.

Table 1
Homologation of ketone 10 under various conditions.
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Entry Reagents and conditions Time Yield

1 triethyl phosphonoacetate, Ba(OH)2, THF, rt to reflux 62 h -a

2 triethyl phosphonoacetate, DBU, THF, rt 56 h -a

3 triethyl phosphonoacetate, tBuOK, THF, 0 �C to reflux 40 h <5%b

4 triethyl phosphonoacetate, LiHMDS, THF, �78 �C to
rt

5 h <5%b

5 methyl (triphenylphosphoranylidene) acetate, DCM,
40 �C

80 h 9%

6 methyl (triphenylphosphoranylidene) acetate,
toluene, 125 �C

110 h 69%

a No reaction occured with complete recovery of the starting material.
b With considerable unidentified decomposition products.
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p-hydroxyphenyl substituent at the 3-position of the oxaspirolac-
tone backbone. In their study, [4] they used Meyers’ dienyloxazo-
line chiral auxiliary with p-(benzyloxy)phenyllithium for the key
conjugate addition. Accordingly, a,b-unsaturated ester 14, readily
prepared from 7, was used as an appropriate substrate for this
addition. One-pot oxidation/olefination of the primary alcohol in
7 using Dess-Martin periodinane and the stabilized ylide (Ph3-
P = CH2CO2Me) furnished the unsaturated ester 14 in 71% yield
[15]. Initially, the conjugate addition of 4-(benzyloxy)phenyl-
lithium to ester 14 in THF at low temperature led to unidentified
decomposition products along with the 1,2-addition product (10–
20%) (Scheme 4). Treatment of ester 14 with corresponding phenyl
Grignard reagent in the presence of cuprous chloride salt was also
unfruitful. In 2012, Fukuyama et al. [16] reported an elegant total
synthesis of the indole alkaloid isoschizogamine. One of the key
steps in their synthesis is a Rh (I)-catalyzed Michael addition of
arylboronic acid to a, b-unsaturated lactone. Encouraged by their
result, we decided to extend the Rh (I)-catalyzed strategy to our
substrate 14. Unfortunately, the conjugate addition reactions of
arylboronic acids to acyclic a, b-unsaturated ester 14 did not yield
the 1,4-addition product under various conditions, only resulted in
unidentified decomposition product and the recovery of major
starting material. These results demonstrate that a, b-unsaturated
g
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, 10% Pd/C, EtOAc, MeOH, 30 h; (g) 70% trifluoroacetic acid, rt, 67% over two steps.



Table 2
Reduction of a, b-unsaturated ester 6 under various conditions.
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Entry Reagents and conditions Time Product (Yield)

1 H2 (1 atm), Pd/C, EtOAc, MeOH 12 h 11a (99%)
2 H2 (1 atm), Pd(OH)2/C, EtOAc, MeOH 12 h 11a (95%)
3 H2 (4 atm), Pd/C, EtOAc, MeOH 12 h 11 (>40%)a

4 H2 (4 atm), Pd/C, EtOAc, MeOH 30 h 11 + 12 (>90%)
5 NaBH4-NiCl2 or NaBH4-CuCl2, �40 �C to rt 24 h -b

6 Mg-MeOH, 0 �C to rt 24 h -c

7 [Ir(cod)(Py)(PCy3)]PF6, H2 (1 atm), DCM 24 h -d

8 Stryker’s reagent, PhSiH3, 0 �C to rt 24 h -c

a With debenzylation product 11a in 50%.
b No reaction occured with complete recovery of the starting material.
c Starting material 6was recovered with unidentified mixtures.
d No desired product was observed.
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ester 14 is exceptionally sterically hindered thus the desired conju-
gate addition is highly impeded and challenging.
Conclusion

In summary, an efficient total synthesis of spiroacetal butyro-
lactone sawaranospirolide C was achieved in seven linear steps
from L-sorbose. Our highly efficient synthesis demonstrated the
powerful application of easily accessible carbohydrate as chiral
pool. Synthetic efforts toward sawaranospirolide A were also
described. However, the effort was compromised by the inability
to effect reduction or conjugate addition of the remarkably unreac-
tive intermediates (6 or 14). Further studies toward the synthesis
of other sawaranospirolides are currently in progress and will be
reported in due course.
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