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ABSTRACT: The synthesis of NH-free pyrroles via Pd-catalyzed
annulation of enaminones and alkenes is reported. With the catalysis
of Pd(II), the activation of triple C(sp*>)—H bonds, including one
internal C(sp*)—H bond in enaminone, has been activated to
provide various pyrroles. The interesting evolution of hydrogen gas

from the reactions has been observed by a hydrogen detector.

As one of the fundamental heteroaryl motifs showing
prevalent applications in multidisciplinary areas,' the
pyrrole ring has been an attractive target throughout the
development of synthetic chemistry. The classical Paal—Knorr
reaction,” Knorr reaction,” and Hantzsch reaction,® for
example, have contributed enormously to the advances of
pyrrole chemistry. However, following the daily increasing
demand in molecular diversity-, sustainability-, and safety-
oriented synthetic strategies, devising alterative and/or
complementary methods for pyrrole synthesis has emerged
as a significant goal in the science of synthesis.” As one novel
example of a newly emerged tool in pyrrole synthesis, the
cascade annulation involving the key activation of one or more
C—H bonds has brought an important breakthrough. For
example, Stuart and co-workers reported the Rh(III)/Cu(1I)-
catalyzed annulation of enamides and alkynes for pyrrole
synthesis via a key addition of the enamide C—H bond to the
alkyne.® Glorius et al. developed the pyrrole ring construction
via Pd(Il)-catalyzed intramolecular C—H alkenylation of
imines.” Ellmann and co-workers disclosed the reactions of
enone-derived oxime esters and imines for pyrrole synthesis via
Rh-catalyzed alkenyl C—H functionalization.” In addition,
reactions featured with C—H bond conversion in various other
substrates have also been developed as practical protocols
toward diverse pyrrole scaffolds.”

Among the designated methods for pyrrole synthesis via C—
H activation or functionalization, however, enamines have
been identified as most frequently used and reliable substrates.
With the catalysis of proper transition metal reagents, stable
enamines such as enaminones, enaminoesters, enaminonitriles,
etc. have been used to couple alkynes,'® alkenes,"" diazoesters/
hydrazones,'> or functionalization of intramolecular C—H
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bonds'? for the synthesis of diversely functionalized pyrroles.
Interestingly, although a plethora of different alkenes have
been successfully used as reaction partners of stable enamines
for pyrrole synthesis, no known method has hitherto been
found to tolerate the transformation of acrylates for the
synthesis of corresponding pyrrole products. Considering the
important and broad application of acrylates in the C—H
alkenylation reactions,'” it is thus highly demanding to
establish new methods by activating the C—H bond of
acrylates and enamines for the synthesis pyrroles with
expanded product diversity.

Recently, the dehydrogenative transformations on C—H
and/or heteroatom-H bonds via hydrogen evolution has
emerged as a drastically sustainable tool in constructing new
C—C or C—heteroatom bonds."> Actually, the dehydrogen-
ation of alcohols and amino alcohols has already been realized
with significant success in the synthesis of pyrroles by releasing
the hydrogen gas via alcohol transformation.'® However,
hydrogen evolution via the activation of the stable C—H bond
has not yet been reported for the construction of a pyrrole ring.
In combination with the recent progress in the vinyl C—H
activation and functionalization disclosed by us and others'” as
well as the recent emphasis in developing novel synthetic
methods via aryl ring construction using polar alkenes,'® we
report herein a new method on the synthesis of pyrroles via
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hydrogen evolution-based coupling of three stable C—H bonds
and an N—H bond by the reactions of simple enaminones and
acrylates. In addition, the synthesis of conjugate dienamines
has also been realized via catalytic addition of enaminones to
propiolates. The efficient transformation of these dienamines
into the titled pyrroles has provided strong evidence in
elucidating the possible reaction mechanism.

Initially, the reaction of enaminone la and methyl acrylate
2a was conducted under different conditions for the synthesis
of pyrrole product 3a. Systematical screening on the catalyst,
additive, medium, temperature, reagents loading, etc. was
executed (see full data in the Supporting Information). As
outlined by the typical data (Table 1), the simultaneous

Table 1. Typical Results on the Condition Optimization”

o
) /[OJ\/\NHZ A come Pd(Ogi;zI;/CuBrg Ph)ﬁ?wwe
1a 2a 3a
entry variation from the general conditions yield (%)°
1 no variation 43
2 Pd(OAc), (0.01 mmol) and CuBr, (0.1 mmol) 24
3 Pd(OAc), (0.01 mmol), no CuBr, 0
4 CuBr, (0.1 mmol) and no Pd(OAc), 0
S reaction at 40 °C 44
6 reaction at 60 °C 48
7 with 0.7 mmol 2a, at 60 °C S5
8¢ with 0.7 mmol 2a, 60 °C 63
9¢ with 0.7 mmol 2a, 60 °C and 0.5 mL of DMF 71

“General conditions: 1a (0.2 mmol), 2a (0.4 mmol), Pd(OAc), (0.02
mmol), CuBr, (0.2 mmol) in DMF (2 mL). Stirred at 80 °C for 12 h.
bIsolated yield. “With additional AgOAc (0.03 mmol).

employment of Pd(II) and Cu(II) reagent was mandatory
(entries 1—4, Table 1). In addition, conducting the reaction at
a mild temperature of 60 °C was favorable to give better results
(entries S—6, Table 1). On the other hand, increasing the
loading of 2a also proved to be practical in improving the
product yield (entry 7, Table 1). Notably, reducing the volume
of reaction medium and employing additionally AgOAc as
additive was able to further enhance the yield of 3a,
respectively (entries 7—9, Table 1).

Under the optimal conditions, the scope and limitations of
this method in synthesizing pyrroles 3 were investigated."” On
one hand, when enaminone la was fixed to react with different
acrylic ester substrates, the products containing a methyl, ethyl,
n-butyl, tert-butyl, or benzyl group (3a—3e and 3q—3u,
Scheme 1) were afforded in good yields. The extension of
the alkene component to internal alkenyl ester, enone, vinyl
nitrile, vinyl amide, styrene, and a-allylnaphthalene was also
conducted, but none gave the expected pyrrole product under
the present conditions (see also Scheme S2 in the Supporting
Information). For the enaminones 1, on the other hand,
electron-withdrawing groups such as F, C, Br, I, and CN (3f—
3n and 3v—3y, Scheme 1) and electron-donating groups such
as alkyl- and alkoxyl-substituted phenyl enaminones (30—3u,
3z—3ac, Scheme 1) showed general tolerance to the synthesis.
Slightly lower yields were observed in the reactions employing
enaminones functionalized with electron-withdrawing groups.
Moreover, enaminones featuring more than one substituent in
the phenyl ring also took part in the synthesis to afford good
results (3al—3ao, Scheme 1). As expected, the synthesis of
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Scheme 1. Substrate Scope on Pyrrole Synthesis®
PdCl,, 10% mol o
o NH, AgOAc, 15 mol%
M + S\_CO,R? _CuBr, 1 equiv Ar T )—CoR? 4 H, |
Ar DMF, 60°C, 12 h NH
1 3

o 3a, R=Me, 71% (53%)°

o
3b, R=Et, 63% R!
PR™ 7 )—CO:R 3¢, R="Bu, 65% T y—CcoRr?
NH 3d, R='Bu, 70% NH
3e, R=Bn, 74%

3v, R"=Cl, R?= Me, 56%
3w, R'=Cl, R?=Bn, 64%
3x, R'= Br, R?= Me, 59%
3y, R'=Br, R2=Bn, 67%

o
T y—come
NH

3ad, 56%

o A
A
N-come = %
NH b W
Vi

P

3z, R'= OMe, R? = Me, 65%
3aa, R'= OMe, R?="Bu, 63%
3ab, R' = Me, R? = Me, 64%
3ac, R'=Me, R2=Et, 61%

L8

3ae, R = Me, 62%; 3af, R='Bu, 57%

o

T )—CoR?
R' NH

3f, R'=F, R?= Me, 53%
3g, R'=F, R?="Bu, 56%
3h, R'=Cl, R?= Me, 58%
3i, R' = CI, R="Bu, 63%
3j, R'=Br, R?= Me, 57%
3k, R'= Br, R?='Bu, 66%
31, R'=1, R?= Me, 52%

3m, R'=CN, R?= Me, 51%
3n, R'=CN, R?= Et, 55%
30, R'= OMe, R?= Me, 68%

1 Ny—CO,R
NH

3p R'=OMe, R?= 'Bu, 63% 3ag, 69% ©CDC 2076610
3q, R'=Me, R2= Me, 70% o Q
3r,R'= Me, R?= Et, 73% S A 2
3s,R'=Me, R2="Bu, 71% T y—co,"8u \ | COR
3t, R'= Me, R2=Bu, 75% NH NH
3u, R' = Me, R? = Bn, 76% 3ai, R = Me, 73%; 3aj, R = Et, 69%
3ah, 64% 3ak, R=Bn, 72%
o
o o
{ [ y—coMme R 3am, R' = OMe, R?= Me, 61%
o NH [ y—CO:R? 3an,R'=Cl, R2= Me, 72%
3al, 63% R NH 3a0, R =Cl, R?='Bu, 75%

“Reaction conditions: 1 (0.2 mmol), 2 (0.7 mmol), DMF (0.5 mL),
reacted under air for 12 h. ®The H, was detected by H, detector.
“Yield from 1 mmol scale reaction.

pyrroles bearing fused aryl (3ag and 3ah, Scheme 1) and
heteroaryl groups (3ag and 3ah, Scheme 1) were also
smoothly acquired by employing corresponding fused and
heteroaryl-functionalized enaminones. Nevertheless, no ex-
pected products were observed when N-substituted enami-
nones, dimedone-derived cyclic NH,-enaminone, and pentane-
2,4-dione-derived alkyl NH,-enaminone was independently
used to react with acrylate 2a under the standard conditions
(Scheme S2 in the Supporting Information). Additionally, the
reaction of aniline with 2a was conducted with the standard
catalytic conditions. However, no evident reaction was
observed.

Interestingly, by means of modifying the reaction conditions,
we were pleased to find that Cul could catalyze the C—H bond
addition of enaminones to alkyl propiolates 4 for the selective
synthesis of conjugate dienamines 5 with good to excellent
yields. As depicted in Scheme 2, different alkyl acrylates (Sa—
Sc, Scheme 2), as well as enaminones possessing functional
groups such as halogen, methyl, methoxy, etc. in either the
meta or para position (5d—Sg, Scheme 2) provided
corresponding products with satisfactory yields. Notably, this
C—H addition also tolerated well the furan-functionalized
enaminone and enaminoester (Sh and S5i, Scheme 2).
Corresponding dienamines with different f-substitutions (R?
= n-Pr or Ph) were also practically furnished (5j or 5k, Scheme
2).

Having been inspired by the tunable synthesis of dienamines
5, we thought that such compounds were the possible
intermediate during the formation of the pyrrole products.
Accordingly, these dienamines were found to undergo
intramolecular dehydrogenative C—H amination to provide
pyrroles 3 with high efficiency under the standard Pd-catalytic
conditions. Besides providing products that had been
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Scheme 2. Synthesis of Conjugate Dienamines”

o}
O NH, . CO:R?

R‘MRQ + =—CO,R®

0.5 equiv Cul R ‘
—_—

MeCN, 80 °C, 24 h

NH,
©)J;(\vcozm O)t(\vcozrwe RWCOZW
NH, NH,

5d,R'=Cl, 86% 5f, R' = Br, 88%
5e, R = Me, 83% 5g, R' = OMe, 80%

o o
- COM X CO,Me
EtO)J\‘A(v 2Me Q)YV 2
Ph” "NH, R?" “NH,

5j, R? ="Pr, 81%
5k, R2=Ph, 77%

5a, R® = Me, 87%
5b, R® = Et, 89%
5¢, R® = 'Bu, 84%

o
o COMe
Y

NH,

5h, 78% 5i, 75%

“Reaction conditions: 1 (0.2 mmol), 4 (0.4 mmol), MeCN (2.0 mL),
stirred under air for 24 h; isolated yield was reported.

synthesized via the direct enamine—acrylate annulation (3a,b,
3d, 3h, 3q, 3x, and 3z, Scheme 3), the intramolecular version

Scheme 3. Synthesis of Pyrroles from Various
Dienamines®”

o o)
X _COR®
R | 27" PdCl,, 10% mol, AgOAc, 15% mol wlk[\\rcoﬂa
CuBry, 1 equiv NH +

DMF, 60 °C, 12 h

3a, R% = Me, 83%

3b, R3 = Et, 80% 3h,R'=Cl, 86% 3x, R'=Br, 88%

3d, R® = 'Bu, 84% 39, R'= Me, 83% 3z, R'= OMe, 80%
E 0 ‘
: 3aq, R'= OEt, R? = Ph, 69% |
! N . : : ., 69%
:mcoﬂ\"e [ V—COMe  3ar Ri=ph, R2="Pr, 71% |
| rZ NH 3as, R'= Ph, R2 = Ph, 73% |

3ap, 67% 1

“Reaction conditions: 5 (0.2 mmol) in DMF (0.5 mL), stirred for 12
h under air; isolated yield was reported. “The H, was detected by H,
detector.

was found to be capable of providing new pyrrole products that
could not be accessed by the above annulation protocol (3ap—
3as, Scheme 3). Moreover, hydrogen evolution was observed
from the reaction, further supporting that S were key reaction
intermediates also in the enamine—acrylate annulation.
However, directly employing enaminone la and methyl
propiolate (4a) to the standard conditions in Scheme 1 did
not provide pyrrole 3a.

For the sake of gaining more information on the reaction
process, some control experiments were also designed. First,
pyrrole 3b and dienamine Sb were obtained by performing the
reaction of 1a and 2a at room temperature (eq 1). In addition,
3b could not be obtained without employing the metal
reagents, confirming the indispensable role of metal in the
reaction (eq 2).

According to the clues provided by the control experiments,
a mechanism for this NH-free pyrrole synthesis has been
proposed. As outlined in Scheme 4, the reaction of AgOAc and
PdCl, may provide active Pd"XL which couples enaminone to
deliver Pd(II) intermediate A via the C—H insertion.”” The
1,2-migratory insertion of the alkene to A leads to the
formation of palladacycle species B. The featured p-H
elimination from B provides dienamine intermediate Sb,
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Scheme 4. Plausible Reaction Mechanism

DMF, 60 °C, 12 h
_—

3b, 0% 2

PdCl,

AgOAc
AgCl

Cu(ll)

PdlXL fa
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L=0AcorX o
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reductive A
elimination \/COQEt
o oL 1,21 mlgratory
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Ph ‘ 2
N Pd”XL ” CoZEt
c N d XL d”
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C-, N-palladation e||lr)ne|i16a;‘0n
Ha | N—co,Et
sbNH2

observed by HRMS

which has been observed with HMRS from the reaction
residue (see the Supporting Information). The dehydrogen-
ative C-N-palladation of Sb with Pd(II) gives rise to
palladacycle C, which undergoes reductive elimination to
yield the pyrrole product. The Pd(0) released thereby can be
regenerated in the presence of a Cu(II) terminal oxidant.

In conclusion, we have developed a method for the synthesis
of NH-free pyrroles with the dehydrogenative coupling of
enaminones and alkenes via Pd-catalyzed activation of triple
C(sp®)—H bonds. The reaction represents a good tolerance of
a broad scope of enaminones and acrylates. In addition, we
also obtained a variety of conjugate dienamines by utilizing
various enaminones and propiolates, and the dienamines could
be transformed to NH-free pyrroles under optimal conditions.
Mechanistic studies suggested that dienamine was most likely
to be an active intermediate during the whole reaction.
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