

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: Iridium-Catalyzed Regio- and Enantioselective Borylation of Unbiased Methylene C(sp3)-H Bonds at the Position Beta to a Nitrogen Center

Authors: Rongrong Du, Luhua Liu, and Senmiao Xu

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.202016009

Link to VoR: https://doi.org/10.1002/anie.202016009

WILEY-VCH

COMMUNICATION

WILEY-VCH

Iridium-Catalyzed Regio- and Enantioselective Borylation of Unbiased Methylene C(sp³)-H Bonds at the Position Beta to a Nitrogen Center

Rongrong Du,^{[a][b]‡} Luhua Liu,^{[a][b]‡} and Senmiao Xu*^{[a][c]}

Dedication ((optional))

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Reser Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000, China E-mail: senmiaoxu@licp.cas.cn	
Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000, China E-mail: senmiaoxu@licp.cas.cn	arch Institute
Chinese Academy of Sciences Lanzhou 730000, China E-mail: senmiaoxu@licp.cas.cn	/
Lanzhou 730000, China E-mail: senmiaoxu@licp.cas.cn	
E-mail: senmiaoxu@licp.cas.cn	
[b] Ms. R. Du, and Mr. L. Liu	
University of Chinese Academy of Sciences	
Beijing 100049, China	
[c] Dr. S. Xu	
Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education	
Hangzhou Normal University	
Hangzhou 311121, China	
R. Du and L. Liu contributed equally to this work	

Supporting information for this article is given via a link at the end of the document. ((Please delete this text if not appropriate))

Abstract: Reported here is the first example of pyrazole-directed iridium-catalyzed enantioselective borylation of unbiased methylene C-H bonds at the position beta to a nitrogen center. The combination of a chiral bidentate boryl ligand, iridium precursor, and pyrazole directing group is responsible for achieving high regio- and enantioselectivities. The current method can tolerate a vast array of functional groups, affording corresponding C(sp³)-H functionalization products in good to excellent enantioselectivities.

Optically active alkyl boronic acid and its derivatives have received considerable interest owing to their diverse applications in synthetic chemistry and drug discovery.^[1] Among these, β -aminoboronates are of significant importance as building blocks for many biologically active compounds.^[2] Apart from one-carbon homologation of α -aminoboronates,^[3] they could also be prepared by means of transition-metal-catalyzed 1,2-aminoboration of alkenes,^[4] hydroboration of enamides,^[6] conjugate borylation of α -dehydroamino acid derivatives,^[6] 1,2-addition of 1,1-diboron compounds to aldimines,^[7] and borylative ring opening of 2-arylaziridines.^[8] Nevertheless, reactive sites of substrates of the above methods need to be preactivated, which will apparently cost extra reagents and tedious steps.

Recently, transition-metal-catalyzed enantioselective C-H borylation has emerged as an attractive alternative to access chiral organoboron compounds in an atom- and step-economical way.^[9] In this context, novel chiral ligands and new strategies developed by Yu,^[10] Hartwig,^[11] Sawamura,^[12] Phipps^[13] and our group^[14] were capable of enantioselective discrimination of enantiotopic C-H bonds enabled by Pd-, Ir-, and Rh-catalysis. Despite the fact, this area is still underdeveloped compared to asymmetric C-C bond forming reactions. For example, a plethora of α -, β - and γ -selective asymmetric C-H functionalization to form C-C bonds has been accomplished for the amine derivatives.^{[15-}

^{18]} In stark contrast, there are only two efficient methods for asymmetric α -C(sp³)-H borylation (Scheme 1a).^[12b, 14d] And, while achiral versions of β -selective reactions have been realized,^[19] the enantioselective discrimination of two enantiotopic methylene C(sp³)-H necessary for asymmetric, β -selective C-H borylation is highly challenging. Thus, it is still appealing to develop novel and complementary methods in this area.

Scheme 1. Regio- and Enantioselective C(sp³)-H Borylation of Acyclic Amine Derivatives.

Pyrazoles not only possess a broad spectrum of biological activities and pharmaceutical properties,^[20] but also are often used as the directing groups in C-H bond functionalization.^[21] One benefit of pyrazoles as directing groups is that they could enable the formation of five-membered metallacyclic intermediate to activate C(sp³)-H bond at the position beta to a nitrogen center. Another distinct advantage is that they could be easily converted to amides through ozonolysis,^[22] which makes them synthetically

COMMUNICATION

more useful. Thus, the use of pyrazoles in asymmetric C(sp³)-H functionalization could be poised to provide both optically active pyrazoles and β -chiral amine derivatives. Here, we report our own studies on the use of the chiral bidentate boryl ligand (**CBL**) to enable the pyrazole-directed Ir-catalyzed enantioselective borylation of unbiased methylene C(sp³)-H bonds at the position beta to a nitrogen center (Scheme 1b).^[12,14f,23]

Table 1. Optimization of reaction conditions

Entry ^[a]	CBL	Yield (%) ^[b]	ee (%) ^[c]
1	CBL1	71	63
2	CBL2	67	67
3	CBL3	32	45
4	CBL4	23	78
5	CBL5	87	98
6	CBL6	85	96
7 ^[d]	CBL5	74	95
8 ^[e]	CBL5	83	95
9 ^[f]	CBL5	73	94
10 ^[g]	CBL5	trace	n.d.

[a] Unless otherwise noted, all the borylation reactions were carried out with **1aa** (0.2 mmol), B₂pin₂ (0.3 mmol), **CBL** (0.01 mmol), and [Ir(OMe)(cod)]₂ (0.005 mmol) at 60 °C in *n*-hexane (2.0 mL) for 12 h. [b] Yield refers to isolated product. [c] Enantiomeric excess (ee) value was determined by HPLC on a chiral stationary column OD-H. [d] [IrCl(cod)]₂ was used instead of [Ir(OMe)(cod)]₂. [e]The reaction was carried out at 70 °C. [f] Cyclohexane was used. [g] Tetrahydrofuran (THF) was used as the solvent.

Our research commenced with the optimization of the reaction conditions using 3,5-dimethyl-1-propyl-1*H*-pyrazole **1aa** as the model substrate as shown in Table 1.^[24] Preliminary examination of borylation of **1aa** (0.20 mmol) with B₂pin₂ (bis(pinacolato)diboron) (0.30 mmol, 1.5 equiv) in the presence of 2.5 mol% [Ir(OMe)(cod)]₂ (cod: 1,5-cyclooctadiene) and 5.0 mol% **CBL1** in *n*-hexane (2.0 mL) at 60 °C for 12 h resulted in good conversion (Table 1, entry 1). Due to the instability of the borylated product **2aa** during isolation by chromatography on silica gel, the crude reaction mixture was treated with

NaBO₃·4H₂O to afford 3aa in 71% isolated yield with 63% ee. Notably, no desired product was observed when the reaction was carried out without CBL1 under otherwise identical reaction conditions. These initial findings encouraged us to further investigate the impact of CBL's substituent on the reaction performance. For example, switching methyl (Me) group to bulkier groups ethyl (Et) (CBL2) and cyclohexyl (Cy) (CBL3) did not further improve both reactivity and enantioselectivity (Table 1, entries 2 and 3). CBL bearing N-aryl groups of 2,6-Et₂-C₆H₃ (CBL4) resulted in low yield (23%) and moderate enantioselectivities (Table 1, entry 4). To our great delight, when CBL5 bearing a 2,4,6-Cy₃-C₆H₂ group was used, 3aa could be obtained in 87% isolated yield with 98% ee (Table 1, entry 5). Further tuning the substituent at the pyridine ring resulted in product with slightly lower ee value (Table 1, entry 6). With the optimized ligand CBL5 in hand, we then further surveyed the effect of iridium precursor, temperature, and solvent on the catalytic performance (Table 1, entries 7-10, which indicates [IrOMe(cod)]₂, 60 °C and *n*-hexane were optimal in terms of both reactivity and chiral induction.

Table 2. Substrate scope generality

Conditions: all the borylation reactions were carried out with substrate (0.2 mmol), $B_2 pin_2$ (0.3 mmol), **CBL5** (0.01 mmol), and $[Ir(OMe)(cod)]_2$ (0.005 mmol)in *n*-hexane at 60 °C for 12 - 24 h. The crude reaction mixture was then treated with NaBO₃·4H₂O (5.0 equiv) in THF/H₂O at rt for 4 h. TBS = *tert*-butyldimethylsilyl.

COMMUNICATION

With the optimized reaction conditions in hand, we then determined the additional substrate scope of the current C(sp³)-H borylation reactions as shown in Table 2. Firstly, we surveyed the tolerance of substituent on the pyrazole ring. Groups such as Me, NO₂, Br, and CO₂Et at C4 position of pyrazole are compatible with the reaction conditions. Corresponding products 3ab-3ae were obtained in 70-86% yields with constantly excellent ee values ranging from 97% to 99%. We then focused on the performance of substrates bearing the varying chain length of linear N-alkyl group. All the reactions with chain length ranging from four to eighteen carbon atoms proceeded smoothly under standard reaction conditions. Accordingly, products 3ba-3ia were obtained in 51-95% yields with excellent enantioselectivities (92-97%). We then turned our attention to the substrates containing branched N-alkyl chain. Pleasingly, products 3ja-3na were obtained in 57-89% yields with excellent ee values (93-95%) although the reaction sites are more congested. The current method could also be compatible with substrate containing transformable group such as amide, acetal, and TBS-protected hydroxyl. For example, although there are two amide-directed competitive reaction sites α -C(sp³)-H of piperidine motif^[12b,14d] and β -C(sp³)-H bond of amide^[14f] in substrate **1oa**. **3oa** could be obtained as exclusive product in 76% yield with 83% ee. Excellent enantioselectivity (3pa: 94%) and good yield was observed when an acetal group resides on the N-alkyl chain. Although TBS-protected alcohol derivatives 1ga and 1ra gave respective products 3ga and 3ra with 80% and 87% ees, excellent enantioselectivities (3ge: 97%; 3re: 96%) were observed when the substrate contains a CO₂Et group at its pyrazole's C4 position.[25]

To further extend the generality of the current reaction, we then moved to substrate bearing an aryl group at the terminal position of linear N-alkyl group as shown in Table 3. When the reaction occurred at the non-benzylic position using 3,5dimethylpyrazole as the directing group, high ee values ranging from 89% to 94% were observed for the corresponding products 5aa-5ia. On the other hand, the benzylic functionalized product 5ja was obtained with low enantioselectivity (33%) probably due to the significant background reaction.[25] Fortunately, the background reaction could be significantly reduced when pyrazole possesses an electron-withdrawing group at its C4 position (4jc-4je).^[25] Particularly, product 5jc could be obtained in 69% yield with 83% ee when a nitro group resides at pyrazole's C4 position.

Next, we applied the current method for the C(sp³)-H functionalization of cholic and deoxycholic acids derived pyrazoles 1sa and 1ta as shown in Scheme 2. Moderate reactivity and diastereomeric ratio (dr) were observed when CBL5 was applied. As a comparison, the use of the enantiomer of CBL5 (ent-CBL5) resulted in diastereomers 3sa' and 3ta' in 71% and 81% vields with excellent dr values. These results not only indicate the stereochemistry of the formation of C-B bonds is predominantly controlled by the catalyst, but also provide a promise of late-stage modification of pyrazole-tethered bioactive compounds.

Table 3. Substrate scope generality

Conditions: all the borylation reactions were carried out with substrate (0.2 mmol), B2pin2 (0.3 mmol), CBL5 (0.01 mmol), and [Ir(OMe)(cod)]2 (0.005 mmol)in n-hexane at 60 °C for 12 h. The crude reaction mixture was then treated with NaBO3·4H2O (5.0 equiv) in THF/H2O at rt for 4 h.

: 5 mol% **CBL**₅ or *ent*-**CBL**₅, 2.5 mol% [Ir(OMe)(cod)]₂, B₂pin₂, *n*-h 60 °C, 48 h; then NaBO₃-4H₂O (5.0 equiv) in THF/H₂O at rt for 4 h. B2pin2, n-hexane,

Scheme 2. Late-stage C(sp3)-H functionalization of bioactive cholic and deoxycholic acids derived pyrazoles.

Scheme 3. Transformations of crude borylated product 2aa. NBS = Nbromosuccinimide, Boc₂O = di-tert-butyl decarbonate, DABCO = 1,4diazabicyclo[2.2.2]octane.

COMMUNICATION

In order to demonstrate the synthetic utility of the current methods, several stereospecific transformations of C-B bond are conducted as shown in Scheme 3. Although borylated product **2aa** is difficult to isolate, the C-B bond of crude **2aa** could undergo a series of stereospecific C-C and C-heteroatom bonds forming reactions under various reaction conditions,^[26] providing corresponding β-functionalized pyrazoles **6-9** in overall 72-87% yields with 98-99% ee. Interestingly, ozonolysis of aminated pyrazole **7** could afford chiral vicinal diamine derivative **10** in 57% yield and 98% ee (eq 2).^[21f]

By prolonging the reaction time, current method is also amendable to gram-scale borylation of **1aa** (1.38 g, 10 mmol) in the presence of reduced catalyst loading (1.0 mol%) with 96% *ee* (eq 1) which is comparable to that obtained from standard reaction conditions (98% *ee*). The subsequent one-pot treatment of crude **2aa** with KHF₂ afforded potassium trifluoroborate **11** (1.47 g) in 60% yield (eq 1).^[27] Finally, the absolute configuration of **3aa** was unambiguously confirmed to be *R* by X-ray singlecrystal diffraction analysis of its acyl protected derivative **12** (eq 2).^[28]

In summary, we have developed the **CBL**/Ir-catalyzed enantioselective borylation of unbiased methylene C(sp³)-H bonds at the position beta to a nitrogen center using pyrazole as the directing group. A broad spectrum of functional groups could be well tolerated, affording a variety of β -functionalized chiral pyrazoles with good to excellent enantioselectivities under mild reaction conditions. Both the C-B bond and the pyrazole group of the borylated product could undergo downstream transformations, which shows the potential synthetic utility of the current C(sp³)-H borylation. Further applications of **CBL**s in other contexts of asymmetric catalysis are currently underway in our laboratory.

Acknowledgements

We thank National Natural Science Foundation of China (21873261 and 91956116), Natural Science Foundation of Jiangsu Province (BK20170422), Hangzhou Normal University (KFJJ2021001), and Lanzhou Institute of Chemical Physics for generous financial support.

Keywords: C-H borylation • asymmetric catalysis • pyrazoles • organoboron • chiral amines

- a) D. Leonori, V. K. Aggarwal, Reagent-Controlled Lithiation–Borylation. In Synthesis and Application of Organoboron Compounds (Eds.: E. Fernandez, A. Whiting), Springer International Publishing: Cham, 2015, pp. 271-295; b) H.-Y. Sun, D. G. Hall, At the Forefront of the Suzuki-Miyaura Reaction: Advances in Stereoselective Cross-Couplings. In Synthesis and Application of Organoboron Compounds (Eds.: E. Fernandez, A. Whiting), Springer International: Cham, Switzerland, 2015, pp. 221–242.
- a) A. S. Gorovoy, O. V. Gozhina, J. S. Svendsen, A. A. Domorad, G. V. Tetz, V. V. Tetz, T. Lejon, *Chem. Bio. Drug Des.* **2013**, *81*, 408-413; b)
 A. S. Gorovoy, O. Gozhina, J.-S. Svendsen, G. V. Tetz, A. Domorad, V. V. Tetz, T. Lejon, *J. Pept. Sci.* **2013**, *19*, 613-618.
- [3] C. Solé, H. Gulyás, E. Fernández, Chem. Commun. 2012, 48, 3769-3771.
- [4] a) N. Matsuda, K. Hirano, T. Satoh, M. Miura, J. Am. Chem. Soc. 2013, 135, 4934-4937; b) H.-C. Jiang, X.-Y. Tang, M. Shi, Chem. Commun. 2016, 52, 5273-5276; c) A. Parra, L. Amenós, M. Guisán-Ceinos, A. López, J. L. García Ruano, M. Tortosa, J. Am. Chem. Soc. 2014, 136, 15833-15836; d) R. Sakae, K. Hirano, M. Miura, J. Am. Chem. Soc. 2015, 137, 6460-6463; e) R. Sakae, K. Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 2015, 54, 613-617; f) R. Sakae, N. Matsuda, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2014, 16, 1228-1231; g) C.-H. Yang, Y.-S. Zhang, W.-W. Fan, G.-Q. Liu, Y.-M. Li, Angew. Chem. Int. Ed. 2015, 54, 12636-12639.
- [5] X.-Y. Bai, W. Zhao, X. Sun, B.-J. Li, J. Am. Chem. Soc. 2019, 141, 19870-19878.
- [6] Z.-T. He, Y.-S. Zhao, P. Tian, C.-C. Wang, H.-Q. Dong, G.-Q. Lin, Organ. Lett. 2014, 16, 1426-1429.
- [7] a) J. Park, Y. Lee, J. Kim, S. H. Cho, Org. Lett. 2016, 18, 1210-1213; b)
 J. Kim, K. Ko, S. H. Cho, Angew. Chem. Int. Ed. 2017, 56, 11584-11588;
 c) J. Kim, C. Hwang, Y. Kim, S. H. Cho, Org. Process Res. Dev. 2019, 23, 1663-1668.
- [8] Y. Takeda, A. Kuroda, W. M. C. Sameera, K. Morokuma, S. Minakata, *Chem. Sci.* 2016, 7, 6141-6152.
- a) Ł. Woźniak, J.-F. Tan, Q.-H. Nguyen, A. Madron du Vigné, V. Smal, Y.-X. Cao, N. Cramer, *Chem. Rev.* 2020, *120*, 10516-10543; b) M. Zhan,
 P. Song, J. Jiao, P. Li, *Chin. J. Chem.* 2020, *38*, 665-667; c) Y.-X. Wang,
 P.-F. Zhang, M. Ye, *Chin. J. Chem.* 2020, *38*, 1762-1766.
- [10] J. He, Q. Shao, Q. Wu, J.-Q. Yu, J. Am. Chem. Soc. 2017, 139, 3344-3347.
- [11] B. Su, T.-G. Zhou, P.-L. Xu, Z.-J. Shi, J. F. Hartwig, Angew. Chem. Int. Ed. 2017, 56, 7205-7208.
- a) R. L. Reyes, T. Iwai, S. Maeda, M. Sawamura, J. Am. Chem. Soc.
 2019, 141, 6817-6821; b) R. L. Reyes, M. Sato, T. Iwai, M. Sawamura, J. Am. Chem. Soc. 2020, 142, 589-597; c) R. L. Reyes, M. Sato, T. Iwai, K. Suzuki, S. Maeda, M. Sawamura, Science 2020, 369, 970-974.
- [13] G. R. Genov, J. L. Douthwaite, A. S. K. Lahdenperä, D. C. Gibson, R. J. Phipps, *Science* **2020**, *367*, 1246-1251.
- [14] a) X. Zou, H. Zhao, Y. Li, Q. Gao, Z. Ke, S. Xu, J. Am. Chem. Soc. 2019, 141, 5334-5342; b) Y. Shi, Q. Gao, S. Xu, J. Am. Chem. Soc. 2019, 141, 10599-10604; c) Y. Shi, Q. Gao, S. Xu, Synlett 2019, 30, 2107-2112; d) L. Chen, Y. Yang, L. Liu, Q. Gao, S. Xu, J. Am. Chem. Soc. 2020, 142, 12062-12068; e) X. Chen, L. Chen, H. Zhao, Q. Gao, Z. Shen, S. Xu, Chin. J. Chem. 2020, 38, 1533-1537; (f) Y, Yang, L. Chen, S. Xu, Angew. Chem. Int. Ed. doi.org/10.1002/anie.202013568.
- [15] a) P. Jain, P. Verma, G. Xia, J.-Q. Yu, *Nat. Chem.* **2016**, *9*, 140; b) S. Greßies, F. J. R. Klauck, J. H. Kim, C. G. Daniliuc, F. Glorius, *Angew. Chem. Int. Ed.* **2018**, *57*, 9950-9954; c) Y. Wang, X. Wen, X. Cui, X. P. Zhang, *J. Am. Chem. Soc.* **2018**, *140*, 4792-4796.
- [16] a) S. Anas, A. Cordi, H. B. Kagan, *Chem. Commun.* 2011, *47*, 11483-11485; b) M. Nakanishi, D. Katayev, C. Besnard, E. P. Kündig, *Angew. Chem. Int. Ed.* 2011, *50*, 7438-7441; c) T. Saget, S. J. Lemouzy, N. Cramer, *Angew. Chem. Int. Ed.* 2012, *51*, 2238-2242; d) A. P. Smalley, J. D. Cuthbertson, M. J. Gaunt, *J. Am. Chem. Soc.* 2017, *139*, 1412-1415; e) B. Su, T. Lee, J. F. Hartwig, *J. Am. Chem. Soc.* 2018, *140*, 18032-18038.
- [17] a) K. S. L. Chan, H.-Y. Fu, J.-Q. Yu, J. Am. Chem. Soc. 2015, 137, 2042-2046; b) H. Wang, H.-R. Tong, G. He, G. Chen, Angew. Chem., Int. Ed. 2016, 55, 15387-15391; c) Q. Shao, Q.-F. Wu, J. He, J.-Q. Yu, J. Am. Chem. Soc. 2018, 140, 5322-5325; d) C. Li, K. Lang, H. Lu, Y. Hu, X.

COMMUNICATION

Cui, L. Wojtas, X. P. Zhang, *Angew. Chem. Int. Ed.* **2018**, *57*, 16837-16841; e) Z. Zhuang, J.-Q. Yu, *J. Am. Chem. Soc.* **2020**, *142*, 12015-12019.

- [18] a) R. Giri, B.-F. Shi, K. M. Engle, N. Maugel, J.-Q. Yu, *Chem. Soc. Rev.* 2009, *38*, 3242-3272; b) T. G. Saint-Denis, R.-Y. Zhu, G. Chen, Q.-F. Wu, J.-Q. Yu, *Science* 2018, *359*; c) C. He, W. G. Whitehurst, M. J. Gaunt, *Chem* 2019, *5*, 1031-1058; d) H. Hayashi, T. Uchida, *Eur. J. Org. Chem.* 2020, *2020*, 909-916; e) Q. Shao, K. Wu, Z. Zhuang, S. Qian, J.-Q. Yu, *Acc. Chem. Res.* 2020, *53*, 833-851; f) A. Trowbridge, S. M. Walton, M. J. Gaunt, *Chem. Rev.* 2020, *120*, 2613-2692.
- a) C. W. Liskey, J. F. Hartwig, *J. Am. Chem. Soc.* 2012, *134*, 12422-12425; b) R. Oeschger, B. Su, I. Yu, C. Ehinger, E. Romero, S. He, J. Hartwig, *Science* 2020, *368*, 736-741.
- [20] a) R. A. Mesa, U. Yasothan, P. Kirkpatrick, *Nat. Rev. Drug Discov.* 2012, *11*, 103-104; b) P. Koppikar, N. Bhagwat, O. Kilpivaara, T. Manshouri, M. Adli, T. Hricik, F. Liu, L. M. Saunders, A. Mullally, O. Abdel-Wahab, L. Leung, A. Weinstein, S. Marubayashi, A. Goel, M. Gönen, Z. Estrov, B. L. Ebert, G. Chiosis, S. D. Nimer, B. E. Bernstein, S. Verstovsek, R. L. Levine, *Nature* 2012, *489*, 155-159; c) L. Da Costa, E. Scheers, A. Coluccia, A. Casulli, M. Roche, C. Di Giorgio, J. Neyts, T. Terme, R. Cirilli, G. La Regina, R. Silvestri, C. Mirabelli, P. Vanelle, *J. Med. Chem.* 2018, *61*, 8402-8416; d) M. Naim, O. Alam, F. Nawaz, M. Alam, P. Alam, *J. Pharm. Bioall. Sci.* 2016, *8*, 2-17.
- [21] a) S. Kawamorita, T. Miyazaki, H. Ohmiya, T. Iwai, M. Sawamura, J. Am. Chem. Soc. 2011, 133, 19310-19313; b) P. Gao, W. Guo, J. Xue, Y. Zhao, Y. Yuan, Y. Xia, Z. Shi, J. Am. Chem. Soc. 2015, 137, 12231-12240; c) W.-C. C. Lee, Y. Shen, D. A. Gutierrez, J. J. Li, Org. Lett. 2016, 18, 2660-2663; d) Y. Shen, W.-C. Cindy Lee, D. A. Gutierrez, J. J. Li, J. Org. Chem. 2017, 82, 11620-11625; e) C. Yuan, G. Tu, Y. Zhao, Organ. Lett. 2017, 19, 356-359; f) N. Gulia, O. Daugulis, Angew. Chem. Int. Ed. 2017, 56, 3630-3634; g) V. Botla, A. Akudari, C. Malapaka, Tetrahedron Lett.2019, 60, 115-119; h) Y. Wang, H. Liu, B. Li, B. Wang, Adv. Synth. Catal. 2019, 361, 1564-1569; i) H. Cai, R. S. Thombal, X. Li, Y. R. Lee, Adv. Synth. Catal. 2019, 361, 4022-4032; j) H. Kim, R. S. Thombal, H. D. Khanal, Y. R. Lee, Chem. Commun. 2019, 55, 13402-13405; k) E. Kang, H. T. Kim, J. M. Joo, Org. Biomol. Chem. 2020, 18, 6192-6210; l) T. Saitou, Y. Jin, K. Isobe, T. Suga, J. Takaya, N. Iwasawa, Chem. Asian J. 2020, 15, 1941-1944.
- [22] C. Kashima, S. Hibi, T. Maruyama, K. Harada, Y. Omote, J. Heterocycl. Chem. 1987, 24, 637-639.
- [23] a) S.-B. Yan, S. Zhang, W.-L. Duan, Org. Lett. 2015, 17, 2458-2461; b)
 G. Chen, W. Gong, Z. Zhuang, M. S. Andrä, Y.-Q. Chen, X. Hong, Y.-F. Yang, T. Liu, K. N. Houk, J.-Q. Yu, Science 2016, 353, 1023-1027; c) S.-Y. Yan, Y.-Q. Han, Q.-J. Yao, X.-L. Nie, L. Liu, B.-F. Shi, Angew. Chem. Int. Ed. 2018, 57, 9093-9097; d) Y.-Q. Han, Y. Ding, T. Zhou, S.-Y. Yan, H. Song, B.-F. Shi, J. Am. Chem. Soc. 2019, 141, 4558-4563; e) Y. Ding, Y.-Q. Han, L.-S. Wu, T. Zhou, Q.-J. Yao, Y.-L. Feng, Y. Li, K.-X. Kong, B.-F. Shi, Angew. Chem. Int. Ed. 2020, 59, 14060-14064.
- [24] The use of non-substituted 1-propylpyrazole results in a mixture of multiple mono- and di-borylated products.
- [25] Racemic-3qa, racemic-3ra, and racemic-5ja were observed in 8%, 3% and 91% ¹H NMR yields without CBL5 under otherwise identical reaction conditions. While reduced background reactions were observed for substrates 1qe, 1re, and 4jc-4je (See supporting information Table S1 for more details). The electron-withdrawing feature of C4 substituent could probably reduce the coordination ability of the C2 nitrogen atom of the pyrazole moiety, which may be the reason for the deceleration of the background reaction.
- [26] a) R. P. Sonawane, V. Jheengut, C. Rabalakos, R. Larouche-Gauthier, H. K. Scott, V. K. Aggarwal, *Angew. Chem. Int. Ed.* 2011, *50*, 3760-3763;
 b) A. Bonet, M. Odachowski, D. Leonori, S. Essafi, V. K. Aggarwal, *Nat. Chem.* 2014, *6*, 584-589; c) X. Liu, Q. Zhu, D. Chen, L. Wang, L. Jin, C. Liu, *Angew. Chem. Int. Ed.* 2020, *59*, 2745-2749.
- [27] G. A. Molander, I. Shin, Org. Lett. 2012, 14, 4458-4461.
- [28] Crystallographic data for 12 could be found in the Supporting Information. CCDC 2042469 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Entry for the Table of Contents

COMMUNICATION

Beta to Nitrogen: Unbiased methylene $C(sp^3)$ -H bonds at the position beta to a nitrogen center could be borylated in an enantioselective manner in the presence of a catalytic amount of the chiral bidentate boryl ligand (**CBL**) and iridium precursor. The method could tolerate a broad spectrum of functional groups, furnishing a variety of $C(sp^3)$ -H functionalized products in good yields with excellent enantioselectivities.