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ABSTRACT: The highly diastereoselective sulfa-Michael addition
of thiolates to enantiopure 2-sulfinyl dienes leads to anti or syn 2-
ene-1,4-hydroxy sulfides in good yields and selectivities dependent
on the reaction conditions in a diastereodivergent process. Synthetic
applications of these enantiopure hydroxy sulfides by subsequent
sigmatropic rearrangements have been outlined.

The asymmetric sulfa-Michael addition is a particularly
useful, general, and versatile method to prepare carbon−

sulfur bonds, of considerable importance in biological
processes, material science, medicinal chemistry, and synthetic
methodologies.1 Within this field, thiol or thiolate additions to
substituted alkenyl sulfoxides are relatively rare and unselective
in some cases.2 In recent years we have been involved in the
application of readily available 1-sulfinyl dienes A3 and 2-
sulfinyl dienes C4 (X = O, NTs, NR′; Y = O, NR′; Scheme 1)

in stereoselective synthesis, including the conjugate addition of
amines and alkoxides (R3YH, RXH) to produce allylic
sulfoxide intermediates that underwent a [2,3]-sigmatropic
rearrangement,5 ultimately leading to 1,4-diol or 1,4-amino-
alcohol derivatives B in a cascade process, with good yields and
stereoselectivities.6 These results prompted us to examine the
conjugate addition of thiolates to 2-sulfinyl dienes D, readily
available from iodides or stannanes 1 (Scheme 1),7 that could
afford allylic sulfoxides E, and ultimately lead to allylic sulfides

F.8 The possibility of benefiting from the useful reactivity of
enantiopure allylic sulfides F in highly stereocontrolled
processes entailing sigmatropic rearrangements was an addi-
tional point of interest to embark on this study.5,9−11

In this report, we summarize our preliminary results on the
stereocontrolled addition of thiolates to enantiopure 2-sulfinyl
dienes followed by [2,3]-sigmatropic rearrangement and
sulfenate cleavage to produce anti or syn hydroxy allylic
sulfides F at will, in good yields and selectivities. In addition,
further synthetic applications of allylic sulfides F in subsequent
sigmatropic processes via allylic sulfoxides, sulfilimines, and
sulfur ylides have been explored.
2-Sulfinyl dienes 2a−h were selected for this study to

address the influence of aryl and alkyl substitution, need for
hydroxyl protection, and geometry of the dienes. These
substrates have been synthesized from enantiopure 1-iodo
vinyl sulfoxides, originally prepared from (1R,2S,5R)-
(−)-menthyl (S)-p-toluenesulfinate, by Stille coupling7 or
coupling with vinyl boronic acids.6c

Table 1 summarizes our efforts directed to examine the
viability and selectivity of the proposed tandem conjugate
addition/[2,3]-sigmatropic rearrangement (for full details, see
Supporting Information (SI)). We selected diene (E,Z)-2a,
octanethiol, and benzyl thiol in the presence of NaH and n-
BuLi in toluene, in analogy with previous results on alkoxide
additions.6c After some experimentation, we found that sodium
and lithium octyl thiolates afforded the desired 2-ene-1,4-
hydroxy sulfide anti-3a in good yield and excellent diaster-
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Scheme 1. Cascade Processes for Syntheses of 2-Ene-1,4-
difunctionalized Products
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eoselectivity (anti/syn, 97:3). Other reaction conditions such
as the addition of octanethiol in the absence of a base did not
produce any addition product and DBU, frequently used as an
initiator in sulfa-Michael reactions,12 gave anti-3a in lower
yield (Table 1, entries 1−3). In contrast to octanethiol, benzyl
thiol using NaH or n-BuLi as bases led to a decrease in anti/syn
selectivity that interestingly was improved by raising the
reaction temperature to 45 °C (entries 4−6) to produce anti-
3b in good yield and diastereoselectivity (87%, 90:10).
In sharp contrast, the use of aromatic thiols and NaH led to

good yields and selectivities of syn 1,4-hydroxy sulfides 4c and
4d (9:91) with opposite configuration at C-2 determined by
analysis of their (S)-MPA derivatives (see SI) (Table 1, entries
7 and 8). This stereochemical outcome was reversed with the
lithium thiolate albeit in moderate selectivity to produce
predominantly anti-3d (Table 1, entry 9). Finally, treatment of
less reactive diene (E,E)-2a with LiSoctyl and LiSBn was
examined in slower reactions (20−24 h) to produce
predominantly syn products with lower enantiomeric ratios
(Table 1, entries 10 and 11). Also, lower conversions and
selectivities were observed for diene (E,E)-2a using sodium
aryl thiolates (see, SI).13

Encouraged by these preliminary results we continued this
study by focusing on octyl and benzyl thiolates and a variety of
sulfinyl dienes with Z geometry at the sulfoxide bearing double
bond, and the results obtained are summarized in Scheme 2. In
addition, to 3a and 3b, discussed in Table 1, installing a TIPS
silyl ether at the allylic alcohol produced excellent diaster-
eoselectivities affording 3e and 3f. The addition is compatible
with a homoallylic hydroxyl group in 2c to afford 3g in good
yield and more demanding sterically or electronically sulfinyl
dienes 2d, 2e, and 2f are also viable substrates for this
chemistry by using lithium thiolates (3h−3j, 4k). In contrast
with the addition of oxygen nucleophiles,6c 2-sulfinyl dienes 2g
and 2h with an alkyl substituent at the position that undergoes
the thiolate conjugate addition (R1 = Bu) produced good
yields of the anti products 3l, 3m, and 3n with good to
excellent diastereoselectivities. Interestingly, the use of sodium
thiolates in some cases decreases the amount of anti-3 in the
mixture. Finally, we examined briefly the use of N-Boc cysteine

Table 1. Optimization of the Tandem Thiolate Conjugate Addition/[2,3]-Sigmatropic Rearrangement

entry compd RSH base/temp/time anti/syna,b yieldc

1 (E,Z)-2a octylSH NaH/0 °C−rt/1 h 3a:4a 97:3 88%
2 (E,Z)-2a octylSH BuLi/0 °C−rt/3 h 3a:4a 97:3 86%
3 (E,Z)-2a octylSH 20%DBU/rt/20 h 3a:4a 95:5 50%
4 (E,Z)-2a BnSH NaH/0 °C−rt/2 h 3b:4b 67:33 99%
5 (E,Z)-2a BnSH BuLi/0 °C−rt/3 h 3b:4b 75:25 80%
6 (E,Z)-2a BnSH BuLi/45 °C/2 h 3b:4b 90:10 87%
7 (E,Z)-2a PhSH NaH/0 °C−rt/3 h 3c:4c 9:91 71%
8 (E,Z)-2a MeOC6H4SH NaH/0 °C−rt/3 h 3d:4d 9:91 90%
9 (E,Z)-2a MeOC6H4SH BuLi/0 °C−rt/2 h 3d:4d 67:33 53%d

10 (E,E)-2a octylSH BuLi/0 °C−rt/24 h 3a:(ent-4a:4a) 0:(88:12) 76%
11 (E,E)-2a BnSH BuLi/0 °C−rt/20 h 3b:(ent-4b:4b) 10:(81:9) 78%

aMeasured from the 1H NMR of the reaction mixture. bAbsolute configuration at C-2 was determined as (S)-MPA esters 5 and 6 (see SI).
cCombined yield of 3 and 4. dMinor amounts (5%) of (E,E)-2a were detected in the 1H NMR of the reaction crude.

Scheme 2. Scope for the Reaction of Alkyl and Benzyl
Thiolatesa

aConditions: The reaction was performed from 0 °C to rt unless
otherwise stated. bThe absolute configuration of 3 and 4 was
determined from the MPA esters 5 and 6 (see SI). cDr expressed as
anti/syn ratio. dCombined yield. eMinor byproducts were also isolated
(20%) and characterized (see SI). fA 5% of (E,E)-2a was also detected
in the crude reaction mixture.
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methyl ester as a representative example of a more function-
alized thiol, and after some experimentation, adduct 4o was
obtained in acceptable yield and fair selectivity, along with
minor amounts (5%) of (E,E)-2a detected in the 1H NMR of
the crude reaction mixture. It should be pointed out that
unexpectedly 4o has a syn relationship of chiral centers as
determined from the MPA ester.
The scope of the cascade reaction for aromatic thiolates was

examined next (Scheme 3). A remarkable inversion of

diastereoselectivity was observed upon treatment of diene
(E,Z)-2a with sodium thiolates from thiophenol, thioanisole,
and 3,5-dichlorobenzenethiol leading mainly to syn-2-ene-1,4-
hydroxy sulfides 4c, 4d, and 4p. Lowering the reaction
temperature to −20 °C did not improve the diastereoselec-
tivity for 4c but led to lower conversion with partial double
bond isomerization to the less reactive (E,E)-2a. A similar
trend has been found for (E,Z)-dienes 2c and 2g to produce
syn 1,4-hydroxy sulfides (4r and 4s) in excellent yields and
selectivities. Sulfinyl dienes lacking a hydroxyl group (2d, 2e,
2f) gave sluggish reactions with aryl thiolates except for 2b
which selectively yielded 4q using the more polar solvent
DME. Interestingly, the addition of aromatic lithium thiolates
increases significantly the amount of anti 1,4-hydroxy sulfides
(3d and 3q), particularly for silyloxy diene 2b that produces
anti-3q with a complete reversal of diastereoselectivity
compared with sodium thiolate.
The diastereodivergent preparation of allylic sulfides 3 and 4

from sulfinyl dienes 2 allowed us to take advantage of the rich
reactivity of this moiety by stereocontrolled [2,3]-sigmatropic
rearrangements (Scheme 4). Initially, we examined the tandem
sulfide oxidation/sulfoxide-sulfenate reaction with m-CPBA
and Et2NH as a thiophile (method A) for anti hydroxy sulfides
3 that consistently led to triol derivatives 7a−7c maintaining
the anti/syn ratio of the starting materials (3a, 3f, and 3m).
Interestingly, a decrease in selectivity was observed for 7a

when benzyl sulfide 3b was submitted to the reaction
conditions compared with octyl sulfide 3a (from 90:10 to
77:23). Similarly to the anti diastereoisomers, syn aromatic
sulfides 4d and 4s (R = 4-MeO-C6H4) gave triols 8a and 8c in
good yields and with no loss of diastereoselectivity. Notably,
substrates 3m and 4s with an alkyl group at the double bond
(R1 = Bu) needed higher temperatures to undergo the [2,3]-
sigmatropic rearrangement. It should be pointed out that
diastereomeric triols anti-7 and syn-8 can be prepared at will
from the same sulfinyl diene by choosing the suitable thiolate.
The structure of the known triols 7a and 8a was further
confirmed by transformation to the isopropylidene ketals and
comparison of the NMR data14 allowing establishment of the
absolute configuration for the carbon−sulfide center in the
precursors (3a and 4d) which evolved through a suprafacial
sulfoxide-sulfenate rearrangement, transferring the chirality
from the C5−S bond to the new C3−O bond.1j,5a On the other
hand, imination of anti allylic sulfides 3a and 3b with
chloramine-T and subsequent [2,3]-sigmatropic rearrangement
of the transient sulfilimines (method B) gave a bis-hydroxy
sulfonamide derivative that was isolated as isopropylidene ketal
9 in moderate yield and with a small decrease in
diastereoselectivity from the starting materials.
Finally, diastereomerically enriched 1,4-hydroxy sulfides

anti-3q (87:13) and syn-4q (9:91) were protected as MOM
acetals (10 and 11) and treated with CH2I2/ZnEt2 in
oxygenated toluene to afford sulfide anti-12 or syn-13,
respectively, resulting from a [2,3]-sigmatropic rearrangement
of a sulfur ylide intermediate with excellent diastereoselectivity
and good isolated yields. It should be pointed out that both
sulfides are ultimately derived from a single starting diene
(E,Z)-2a (Scheme 5). The absolute configuration of 12 and 13
was further confirmed through selective removal of the MOM
protecting group (ZnBr2/C8H17SH/CH2Cl2/rt) to give

Scheme 3. Scope for the Reaction of Aryl Thiolatesa

aConditions: The reaction was performed in toluene from 0 °C to rt
unless otherwise stated. bThe absolute configuration was determined
from the MPA esters 5 and 6 (see SI). cDr expressed as anti/syn ratio.
dCombined yield. e20% of (E,E)- and (E,Z)-2a was detected as a
50:50 mixture. fMonosilylation of 4d provides 4q in good yield (see
SI). g10% of (E,E)-2b was also observed in the 1H NMR of the crude
mixture.

Scheme 4. Synthesis of Triol and Hydroxy Sulfonamido
Derivativesa

aCombined yield unless otherwise stated. bEt2NH, toluene, 85 °C, 6
h (7c); Et2NH, MeOH, 40 °C, 2 h (8c). cCombined yield for diols
(not shown). dOverall isolated yield for anti-9 from 3a.
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hydroxy sulfides anti-14 and syn-15 (not shown) and
preparation of the MPA esters (see SI).
The simplified rationalization of the stereochemical outcome

of this tandem process shown in Scheme 6 results from a

delicate interplay of factors such as starting material, thiol,
counterion, solvent, and temperature. We believe that initial
fast conjugate addition of alkyl thiolates onto the si-face of the
dienyl sulfoxide and stereoselective α protonation gives
transient allylic sulfoxide I that undergoes a favorable endo
[2,3]-sigmatropic rearrangement to sulfenate III, rapidly
cleaved by excess thiolate to produce anti-3. In contrast, the
use of aryl thiolates results in an enhanced syn selectivity that
may be attributed to β protonation of the intermediate sulfinyl
carbanion to produce allylic sulfoxide II, probably due to
stabilizing interactions between aromatic rings (p-Tol and ArS)
at the carbanion stage that bring about a conformational
change prior to protonation; this trend is particularly
important for sodium aryl thiolates. Subsequent exo [2,3]-
sigmatropic rearrangement produces sulfenate IV and
ultimately 2-ene-1,4-hydroxy sulfide syn-4 as the main product.
Interestingly, benzyl thiolates stand at an intermediate stage
consistently producing anti-3 with lower diastereoselectivities
than alkyl thiolates.
In summary, a diastereodivergent synthesis of anti and syn 2-

ene-1,4-hydroxy sulfides from enantiopure 2-sulfinyl dienes has
been described. The transformation entails a cascade reaction
triggered by a conjugate addition of thiolates to give a transient
allylic sulfoxide that undergoes sulfoxide-sulfenate rearrange-
ment followed by in situ sulfenate cleavage. The overall
diastereoselectivity is strongly influenced by the nature of
thiolate and counterion as well as by the structure of the
starting diene. We have also outlined that subsequent [2,3]-
sigmatropic rearrangements of these highly useful enantiopure
1,4-hydroxy sulfides provide an efficient and diastereoselective

access to anti or syn acyclic triol and hydroxy sulfide derivatives
that can be obtained at will from a single 2-sulfinyl diene by the
proper choice of thiolate and counterion.
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