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reactions†

Alexey A. Kostenko, Kseniya A. Bykova, Alexander S. Kucherenko,*
Andrey N. Komogortsev, Boris V. Lichitsky and Sergei G. Zlotin *

2-Nitroallylic carbonates, a new class of “green” 1,3-bielectrophilic reagents for organic synthesis and cat-

alysis, have been prepared. The bifunctional tertiary amine-catalyzed asymmetric [3 + 3] annulations of

cyclic enols with these reagents occur much faster than corresponding reactions with 2-nitroallylic esters

and produce no acidic by-products poisoning the catalyst. Furthermore, 2-nitroallylic carbonates enable

highly enantioselective one-pot synthesis of a variety of fused dihydropyrane derivatives from available

precursors bearing pharmacophoric fragments.

Introduction

Asymmetric annulation reactions,1 along with cycloaddition
reactions,2 are the most convenient and efficient methods for
enantioselective synthesis of bi- and polycyclic organic com-
pounds including natural compounds3 that exhibit various
biological activities.4–11 These reactions allow a facile one-pot
synthesis of densely functional molecules bearing several
stereogenic centers from available bifunctional precursors.1 A
number of annulation cascades comprise asymmetric addition
and cyclization steps. The latter may be accompanied by simul-
taneous cleavage of a leaving group,12 such as the carbonate
group, which is the most attractive from the “green chemistry”
viewpoint.13 The Morita–Baylis–Hillman (MBH) carbonates I
are a classical example.14,15 These bifunctional “green”
reagents readily undergo the [3 + 2] annulation with electron-
deficient olefins catalyzed by chiral amines or phosphines to
afford pharmacology-relevant fused dihydropyrane derivatives,
in particular, tetrahydropyrano[2,3-e]indoles,16 benzo[g]chro-
mene-5,10-diones,17 tetrahydropyrano[2,3-c]pyrazoles,18 chro-
manes and benzo[f ]chromenes,16 pyrano[2,3-d]pyrimidine-2,4
(3H,5H)-diones,19 bicyclo[3.3.1]nonan-9-ones20 and tetrahydro-
5H-pyrano[3,2-c]quinolin-5-ones21 (Scheme 1). Carbon dioxide
and an alcohol (ButOH) are the only by-products in these reac-
tions. The ester group-free allylic carbonates are widely used in

allylation reactions.22 2-Nitroallylic alcohol derivatives (1,3-bie-
lectrophilic nitro-MBH-reagents) II bearing easily transform-
able nitro group23 are considered as suitable substrates for the
ring-forming reactions. Unprotected nitroallylic alcohols (IIa)24

and their acetates (IIb)20,25–27 or 2-naphthoates (IIc)21 enantio-
selectively react with cyclic enols to give dihydropyrane nitro
derivatives through a [3 + 3] junction mode.28,29 However, the
reactions with unprotected 3-hydroxy-2-nitroalkenes IIa
bearing a poor leaving group (LG = OH) require heating,30

which may reduce selectivity. On the other hand, more active
esters IIb and IIc inherently produce acetic or naphthoic acid
by-products that poisoned a Lewis base catalyst and must be
neutralized by addition of an external base.

We hypothesized that 2-nitroallyl carbonates IId that
tended to release EtOH and CO2 rather than harmful carbon
acids would be preferable 1,3-bielectrophiles in these reactions
(see Scheme 1). We expected that the absence of acidic by-pro-
ducts, incompatible with the catalyst, would eliminate the
addition of an external base and allow performing the reaction
with various cyclic enol precursors under mild conditions with
high diastereo- and enantioselectivity. However, to our knowl-
edge, 2-nitroallyl carbonates IId (LG = OC(O)OEt) have not
been reported so far. Herein, we managed to synthesize these
useful bifunctional reagents and successfully applied them in
asymmetric catalytic annulations with cyclic 1,3-dicarbonyl
compounds and their heterocyclic analogues.

Results and discussion

We synthesized 1,3-bielectrophilic nitro-MBH-reagents 2a–e by
careful treatment of the corresponding 2-nitroallylic alcohols30
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1a–e with ethyl chloroformate in the presence of a base
(Scheme 2). Unexpectedly, the synthesis of these highly sensi-
tive to bases small molecules appeared a challenging task. We
examined various basic reagents and solvents in the alkoxycar-
bonylation reaction (see ESI†) and succeeded to synthesize the
desired substrates 2a–e as yellowish crystals in the high iso-
lated yields (85–93%) using ClCO2Et/DMAP in CH2Cl2 at
ambient temperature.

Scheme 1 Research strategy.

Scheme 2 Synthesis of 1,3-bielectrophilic nitro-MBH-reagents 2a–e.

Fig. 1 Organocatalysts 4–7.

Organic & Biomolecular Chemistry Paper

This journal is © The Royal Society of Chemistry 2021 Org. Biomol. Chem., 2021, 19, 1780–1786 | 1781

Pu
bl

is
he

d 
on

 0
1 

Fe
br

ua
ry

 2
02

1.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
N

ew
 M

ex
ic

o 
on

 5
/1

5/
20

21
 9

:0
2:

43
 A

M
. 

View Article Online

https://doi.org/10.1039/d0ob02283g


Asymmetric annulation of 2-nitroallylic carbonate 2a with
dimedone 3a served as a model reaction. At first, we studied
this reaction in the presence of bifunctional tertiary amine-
squaramides 4–7, which proved to be efficient activators of
carbon acids in reactions with electrophilic olefins (Fig. 1).31–33

In all the cases, product 8aa was obtained in dichloro-
methane (DCM) in high isolated yields (80–99% over 5 h)
with excellent diastereoselectivity (dr > 20 : 1) (Table 1, entries
1–11). However, enantioselectivities of the catalytic reactions
depended on catalyst used. The best enantiomeric enrichment
of 8aa (94% ee) was observed in the reaction catalyzed by
bifunctional Rawal-type tertiary amine 4b (entry 2). Then, we
examined the solvent effects on the outcome of the 4b-cata-
lyzed model reaction and found that THF, MeCN, and dichlor-
oethane (DCE) provide inferior results (entries 12–14). In
water, both the yield (72%) and stereoinduction (50% ee) were
even worse (entry 15). Decreasing the catalyst loading to
0.5–1 mol% mitigated enantiomeric excess slightly but severely
affected the reaction rate (entries 16 and 17). Importantly, the
reaction in DCM appeared scalable at least 80-times, without
affecting yield and selectivity (entry 18).

Under optimized conditions, cyclic enols 3b–h reacted with
2-nitroallylic carbonate 2a affording mainly trans-diastereo-
mers (dr ≥ 10 : 1) of the corresponding fused dihydropyrane
derivatives 8ab–8ah in nearly quantitative yields (Scheme 3).
Reactions of carbonate 2a with cyclohexenone substrate 3a,
heterocycles 3e and 3f bearing the thiobarbiturate core,
lawsone (3g) and benzo[a]phenazin-5-ol (3h) were character-
ized by high enantioselectivity (90–99% ee). Among tested sub-
strates, lawsone (3g) exhibited the best reactivity and selectivity
affording 98% of enantiomerically pure product 8ag in 3 h
time. The chiral induction was inferior for compounds 3b–d
containing fused cyclopentenone, pyranone and coumarin
fragments (65–70% ee), while the excellent trans-diastereo-
selectivity was retained.

According to the X-ray diffraction data, compound 8ag has
the (3R,4S)-absolute configuration (Fig. 2). The (3R,4S)-con-
figuration was assigned to other annulation products 8 by
analogy.

2-Nitroallylic carbonates 2b–d bearing halogenated aro-
matic ring or thiophene fragment bonded to the terminal ole-
finic carbon atom can be involved in the catalytic reactions
with cyclic enols 3g and 3h (Scheme 4). Major trans-isomers of
corresponding cross-annulation products 8bg, 8ch and 8dg
were stereoselectively assembled in these reactions in nearly
quantitative yield with very high enantiomeric enrichment
(92–99%). Interestingly, trans-diastereoselectivity in the reac-
tion of carbonate 2b, containing 4-bromopenyl group, with
lawsone (3g) was noticeably lower than in similar reaction of
thiophene-based nitroallylic carbonate 2d (dr 5 : 1 vs. 25 : 1),
while the enantioselectivity was superior in case of 2b (97% vs.
92% ee). Nitrodiene 2e also appeared suitable substrate for the
annulation with lawsone (3g) to afford the styrene-derived het-
erocycle 8eg as mainly trans-diastereomer with 99% ee.

The absolute configuration of stereogenic centers in pro-
ducts 8 is in accordance with the plausible transition state TS1,
in which the bifunctional tertiary amine-squaramide catalyst
4b deprotonates cyclic enol 3 to produce active nucleophilic
species (Scheme 5). Simultaneously, the same catalyst activates
and appropriately orients in space nitroallylic substrate 2
through hydrogen bonding with the squaramide fragment to
ensure high enantio- and diastereoselectivity of the catalytic
process. The thus generated linear Michael adduct undergoes
spontaneous intramolecular nucleophilic substitution
accompanied by elimination of CO2 and EtOH via the tran-
sition state TS2 to give fused dihydropyrane derivatives 8 as
single diastereomer.

To compare activities of 2-nitroallylic carbonates and
corresponding acetates in the catalytic annulations with cyclic
enols, we undertook HPLC- and 1H NMR-monitoring of the
reactions between 4-hydroxycoumarin 3d and carbonate 2a or
acetate 2a′ under similar conditions (3d (0.04 mmol), 2a or 2a′
(0.04 mmol), 4b (0.002 mmol, 5 mol%), DCM (1.0 mL), r.t.)
(Fig. 3). The conversion in the reaction with carbonate 2a after
15, 35, 65, 95, 155 and 200 min was an order of magnitude
higher than that in the reaction with acetate 2a′. The excellent
activity of 2-nitroallylic carbonates 2a in the catalytic reaction

Table 1 Model reaction between 2a and 3a a,b

Entry Cat Solvent Yield of 8aa c, % eed, %

1 4a DCM 90 75
2 4b DCM 96 94
3 5 DCM 75 −82
4 6a DCM 82 45
5 6b DCM 80 86
6 7a DCM 80 50
7 7b DCM 85 55
8 7c DCM 83 30
9 7d DCM 81 47
10 7e DCM 87 −68
11 7f DCM 85 −80
12 4b THF 94 89
13 4b MeCN 92 88
14 4b DCE 84 87
15 4b H2O 72 50 (56e)
16 f 4b DCM 89 90
17g 4b DCM 51 83
18h 4b DCM 93 92

aUnless otherwise specified, the reaction conditions were as follows:
2a (12.6 mg, 0.05 mmol), 3a (7.0 mg, 0.05 mmol), catalysts 4–7
(5 mol%), solvent (0.1 mL). r.t. bUnless otherwise specified, dr was
≥20 : 1 for product 8aa after flash-column chromatography on silicagel.
c Yield after flash-column chromatography on silicagel. dHPLC data
were obtained on the chiral phase (Chiralpak OD-H column, n-hexane/
i-PrOH 90 : 10, flow rate 1.00 mL min−1, 254 nm; tR(major) = 30.1 min,
tR(minor) = 25.5 min). e dr 90 : 10, ee for cis-diastereomer is given in par-
enthesis. f The reaction was carried out with 1 mol% of catalyst 4b.
g The reaction was carried out with 0.5 mol% of catalyst 4b. h The reac-
tion was carried out with catalyst 4b (97.4 mg, 0.2 mmol, 5 mol%), 2a
(1.00 g, 4.0 mmol) and 3a (0.56 g, 4.0 mmol) in DCM (4.0 mL) for 7 h.
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may be attributed to the maintenance the catalyst active sites
over the catalytic process, in which irreversible protonation of
the tertiary amino group does not occur, and to thermo-
dynamic stability of the eliminating carbon dioxide.

The synthesized products 8 contain dihydropyrane struc-
tural unit that is present in herboxidiene34,35 (antitumor
activity) and zincophorin36,37 (activity against Gram-positive
bacteria) along with other useful heterocyclic motifs. Indeed,
compound 8ac incorporates 3,5-dihydroxysorbic acid δ-lactone,
which is a precursor of sorbic, dienoic, and hexenoic acids.
Dienoic acid is used to inhibit the growth of various molds
and hexenoic acid and is applied as a flavoring agent.38

Polycyclic product 8ad contains masked 4-hydroxycoumarin

Scheme 3 Variation of cyclic enols 3a–h.

Fig. 2 X-ray data for 8ag.

Scheme 4 Variation of 2-nitroallyl carbonates 2b–d.
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motif, which constitutes the structural core of anticoagulant
warfarin.39 Compounds 8ae and 8af belong to the barbiturate
family of sedatives, hypnotics, and antioxidants.40 Products
8ag, 8bg, 8dg and 8eg can be considered as derivatives of
lawsone, the core structure of Atovaquone and dihydro-
α-caryopterone which exhibit antimicrobial and anticancer
activities.41–43 Compounds 8ah and 8ch contain heterocyclic

scaffold of benzo[a]phenazin-5-ol, a powerful anti-cancer agent
sAJM589 (Fig. 4).44

Conclusion

In conclusion, we synthesized 2-nitroallylic carbonates that are
the representatives of a new class of “green” reagents for asym-
metric annulation reactions. These reagents exhibit much
higher reactivity in the bifunctional tertiary amine-catalyzed
asymmetric reactions with cyclic enols than the corresponding
2-nitroallylic acetates, and produce no acidic by-products de-
activating the catalyst. In particular, they allow highly stereo-
and enantioselective synthesis of fused dihydropyranes
bearing pharmacology-relevant structural motifs and their ana-
logues. The researches aimed at the extending application of
2-nitroallylic carbonates in organic synthesis and catalysis, are
currently underway in our laboratory.
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