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ABSTRACT: An efficient and atom-economical silver-mediated [2 + 2 + 1] cyclization protocol for the synthesis of 3,4-fused-ring-
substituted and 2,S-unsubstituted selenophenes or thiophenes has been developed. Two C—Se/C—S bonds and one C—C bond
were rapidly constructed in one step. Readily accessible substrates, commercially available elemental selenium/sulfur, and good
functional group tolerance make this procedure attractive for the synthesis of #-conjugated material molecules.

3,4-Fused-ring-substituted thiophene and selenophene deriva-
tives with unsubstituted 2,5-positions have received great
attention owing to their wide applicability as precursors of
conductive polymers (Figure 1).' Some of these polymers such
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Figure 1. Representative 3,4-fused ring substituted polythiophenes
and polyselenophenes.

as PEDOT and PEDOS have numerous advantages compared
with other conducting polymers, and hold promise for diverse
applications in several fields such as solar cells, organic light-
emitting diodes (OLEDs), organic field-effect transistors
(OFETs), and electrochromic devices.” However, the synthesis
of such polythiophene and polyselenophene monomers is
often difficult, and most of the known methods adopt
multistep reactions, resulting in poor efficiency.” From the
perspective view of organic synthesis, the [2 + 2 + 1] reaction
of diynes with sulfur or selenium source to construct 3,4-fused-
ring-substituted thiophenes or selenophenes is undoubtedly a
straightforward and efficient method. Although there have
been a few reports on this strategy, some limitations still exist.
The classic Fagan—Nugent reaction can be used for the
preparation of both thiophenes and selenophenes, but the
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functional-group compatibility is limited due to the highly
reducing character of “Cp,Zr”. At the same time, bis(silyl)-
diynes were applied as substrates and further desiliconization is
required (Scheme 1a).* Yamamoto and co-workers reported a
luxurious Ruthenium catalyzed [2 + 2 + 1] cycloaddition of
bis(silyl)diyne with a special sulfur donor, only one case of 3,4-
fused-ring-substituted thiophene in moderate yield was
obtained (Scheme 1b).” Recently, a one-step intramolecular
radical cascade reaction of diynes with thioacetic acid in the
presence of AIBN to synthesize thiophenes was realized by
Zade’s group. However, it failed to be applied to the synthesis
of selenophenes (Scheme 1c).° In this context, efficient and
general protocols for accessing such compounds, especially
selenophenes, which are more difficult to synthesize, are highly
desirable. It is well-known, elemental sulfur or selenium widely
exists in nature with low toxicity, stable properties under
ambient conditions, and no unpleasant odor.” Thus, the
development of an efficient and easy-to-operate [2 + 2 + 1]
approach to efficiently construct 3,4-fused-ring-substituted
thiophenes and selenophenes using diynes and elemental
sulfur/selenium would be very attractive. Herein, we report a
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Scheme 1. [2 + 2 + 1] Approaches to Synthesize
Cyclopenta[c]thiophene or Cyclopenta[c]selenophene

Fagan-Nugent reaction: Zr-Catalyted [2 + 2 + 1] cyclization reaction
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novel and atom-economical silver-mediated [2 + 2 + 1]
cyclization reaction of readily available diynes with elemental

selenium/sulfur to synthesize valuable 3,4-substituted
cyclopenta[c]selenophenes/cyclopenta[ c]thiophenes.

We initially conducted the investigation using dimethyl 2,2-
di(prop-2-yn-1-yl)malonate la with elemental selenium (3.0
equiv) in the presence of 2.0 equiv of AgOAc, 4.0 equiv of
K,CO4, 10 mol % Co(OAc),*4H,0, and 1.5 equiv of TBAI at
60 °C in DCM. The results are depicted in Table 1. To our
delight, cyclopenta[c]selenophene 2a could be formed in 62%
yield within 12 h (Table 1, entry 1). The structure of 2a was
confirmed by X-ray crystallography (CCDC 2089010).
Interestingly, increasing the reaction temperature to 80 °C
afforded 2a in a higher yield of 82% (Table 1, entry 3). Next,
we investigated the silver salts. Both Ag,CO; and Ag,0O
significantly reduced the reaction yield (Table 1, entries 4 and
5). Then, other bases, such as Na,CO; and Cs,CO; were
tested. No better results were acheieved (Table 1, entries 6 and
7). Subsequently, different additives including Co(OAc),,
CoBr,, Col,, Cu(OAc),, CuBr, and CuCl, were screened,
leading to product 2a in 52—72% yields (Table 1, entries 8—
13). The solvent effects on the reaction course were also
examined. The reaction could also be performed in toluene or
1,4-dioxane, and 2a was formed in lower yields of 46—51%
(Table 1, entries 16 and 17). However, the yield of 2a was
dramatically decreased to 27% when DCE was employed
(Table 1, entry 14). The reaction was hindered in a polar
solvent like DMF (Table 1, entry 15). The amount of AgOAc
was further investigated. When the amount of AgOAc was
decreased to 1.0 equiv, 2a was remarkable decreased to 44%

Table 1. Optimization Studies for the Synthesis of 2a”

MeO,C/ —

[Ag], additive, base, TBAI

solvent, temp, air, t

MeO,C N\ T Se
1a

entry [Ag] (equiv) base additive
1 AgOAc (2) K,CO, Co(OAc),4H,0
2 AgOAc (2) K,CO,4 Co(0OAc),-4H,0
3 AgOAc (2) K,CO, Co(0Ac),*4H,0
4 Ag,CO; (2) K,CO, Co(OAc),4H,0
S Ag,0 (2) K,CO;, Co(OAc),-4H,0
6 AgOAc (2) Na,CO, Co(OAc),4H,0
7 AgOAc (2) Cs,CO; Co(0OAc),-4H,0
8 AgOAc (2) K,CO, Co(OAC),
9 AgOAc (2) K,CO; CoBr,
10 AgOAc (2) K,CO, Col,
11 AgOAc (2) K,CO, Cu(OAc),
12 AgOAc (2) K,CO, CuBr,
13 AgOAc (2) K,CO,4 CuCl,
14 AgOAc (2) K,CO, Co(OAc),4H,0
15 AgOAc (2) K,CO, Co(OAc),4H,0
16 AgOAc (2) K,CO,4 Co(0OAc),-4H,0
17 AgOAc (2) K,CO; Co(OAc),-4H,0
18 AgOAc (1) K,CO,4 Co(OAc),4H,0
19 AgOAc (3) K,CO;, Co(OAc),4H,0
20" AgOAc (2) K,CO; Co(OAc),-4H,0
21° AgOAc (2) K,CO,4 Co(0OAc),4H,0
224 AgOAc (2) K,CO, Co(OAc),-4H,0
23¢ AgOAc (2) K,CO, Co(OAc),4H,0
2 - K,CO, Co(OAc),4H,0
25 AgOAc (2) - Co(OAc),4H,0
26 AgOAc (2) K,CO; -

Me02c>©i/\se
Me0,C™ =

2a

solvent temp (°C) t (h) yield (%)

DCM 60 12 62
DCM 70 10 63
DCM 80 10 82
DCM 80 10 48
DCM 80 10 53
DCM 80 10 28
DCM 80 10 39
DCM 80 10 72
DCM 80 10 68
DCM 80 10 68
DCM 80 10 52
DCM 80 10 5SS
DCM 80 10 SS
DCE 80 10 27
DMF 80 10 trace
tol 80 10 46
1.4-dioxane 80 10 51
DCM 80 10 44
DCM 80 6 70
DCM 80 10 64
DCM 80 10 56
DCM 80 10 61
DCM 80 10 trace
DCM 80 10 0
DCM 80 10 trace
DCM 80 10 63

“Reaction conditions: 1a (0.2 mmol), Se (0.6 mmol), [Ag] (0.4 mmol), base (0.8 mmol), additive (10 mol %), TBAI (0.3 mmol), solvent (2.0
mL), air, isolated yields. “K,CO; (0.6 mmol). “Se (0.4 mmol). “Se (0.8 mmol). “Without TBAL
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yield (Table 1, entry 18). A slight erosion of the yield was
gained when using 3.0 equiv of AgOAc (Table 1, entry 19).
Decreasing the amount of K,CO; to 3.0 equiv resulted in a
lower product yield (Table 1, entry 20). Changing the amount
of Se to 2.0 or 4.0 equiv did not produce better results (Table
1, entries 21 and 22). In addition, only a trace amount of 2a
was observed when the reaction was carried out without TBAI
(Table 1, entry 23). TBAI may act as a phase transfer catalyst,
increasing the dissolution of selenium and K,COj; in the
nonpolar solvent DCM, In the absence of silver salt or base, no
product was obtained (Table 1, entries 24 and 25). Removal of
the additive led to a 63% yield (Table 1, entry 26).
Encouraged by the above results, we investigated the
substrate range of the cyclization reaction. As shown in Figure
2, a variety of diynes 1 were tested, and the corresponding

AgOAc (2.0 equiv)
Co(OACc),#4H,0 (10 mol%)
K,COj3 (4.0 equiv)

MeO,C /= TBAI (1.5 equiv)

MeO,C * S 32823@23 M
2 = DCM, 80 °C, air, 10 h 2
1a 3a, trace
Cu(OAc), (10 mol%)
TMEDA (2.0 equiv)
= AgOAc (2.0 equiv) =
e G woS (s
2 = DCE, 60 °C, air, 12 h 2
1a 3a, 80%

TMEDA, at 60 °C in DCE for 12 h, providing the desired 3a in
80% yield (eq 2).

With the optimized reaction conditions in hand, the
substrate scope of diynes 1 for the synthesis of cyclopenta[c]-
thiophenes 3 was examined (Figure 3). Various functionalized

AgOAc (2.0 equiv)
Co(OAc),#4H,0 (10 mol%)
K,COj3 (4.0 equiv)
TBAI (1.5 equiv)

DCM, 80 °C, air, 10 h
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B0, A proso Xl Se
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2a, 82% 2b, 68% 2¢, 64% 2d, 93%
BOC.. [~ MeOC 17 MeOC, = PhOC, 1=
BnO,C N\ A8 Meoc X% R0, eI o, c NI %
2e, 73% 2, 30% 29, 58% 2h, 63%
OTBS
B0, A5 Meo,c S8 Me0C I Se <Se
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o] o o] \ O
_ N
N
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Ph
PhNESe TsN/\:QSe <I>Se MeOQC><:\j§S
MeO,C ~"°
2q, 55% 2r, 53% 2s, 0% 2t,0%

Figure 2. Substrate scope of diynes 1 to synthesize cyclopenta[c]-
selenophenes 2. Reaction conditions: 1 (0.2 mmol), Se (0.6 mmol),
AgOAc (0.4 mmol), K,CO; (0.8 mmol), Co(OAc),"4H,0 (0.02
mmol), TBAI (0.3 mmol), DCM (2.0 mL), air, isolated yields. “60
°C.

cyclopenta[c]selenophene products 2a—2r were smoothly
synthesized in 39—93% yields. Notably, various functional
groups, including ester, nitrile, ketone, amide, sulfone, and silyl
ether, were well tolerated under the reaction conditions.
However, when 1,6-heptadiyne was used, we did not observe
the formation of corresponding product 2s. In further
investigations of the applicability, we found that diyne with a
phenyl substituent at one triple bond failed to give the desired
products 2t under standard conditions, and the staring material
was recovered. It indicates that terminal diacetylenes are
indispensable to the formation of cyclopenta[c]selenophenes.
Subsequently, we tried to apply this method to the
cyclization reaction of diyne la with elemental sulfur to
synthesize cyclopenta|[c]thiophene. Unfortunately, only a trace
amount of 3a was detected (eq 1). In order to improve the
yield of 3a, different reaction parameters, such as temperature,
silver salts, bases, additives, and solvents, were screened (see
Supporting Information, Table S1). It was found that the best
result for the preparation of 3a was to use 1.0 equiv of Sg, 10
mol % Cu(OAc),, 2.0 equiv of AgOAc, and 2.0 equiv of
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Cu(OAc); (10 mol%)
TMEDA (2.0 equiv)
AgOAc (2.0 equiv)

= DGE, 60 °C, air, 12 h
1 3
Meo2c><jjs EtOZC><ji/\S "P.rozc><rS 'Buozc><jjs
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3e, 83% 3f, 46% 39, 50% 3h, 70%
PhOC><jj/\s NC><:E>S Ph028><rs Meozc@js
EtO,C \ A~ Et0,C \ A~ MeO,C~ \ s ~
o
3i, 74% 3j, 74% 3k, 68% 31, 69%
oTBS OH 2 O
oTBS OBn o )
3m, 7% 3n, 68% 30,67% 3p,61%
0 ol e T8SO
s X s o< s s
o N =
o] o] /0
3q,61% 3r, 50% 3s, 56% 3t,51%
Ph
v s TN s (s Meozc><:és
MeO,C~ \ =
3u, 84% 3v, 74% 3w, 0% 3x, 0%

Figure 3. Substrate scope of diynes 1 to synthesis cyclopenta[c]-
thiophenes 3. Reaction conditions: 1 (0.2 mmol), Sg (0.2 mmol),
AgOAc (0.4 mmol), TMEDA (0.4 mmol), Cu(OAc), (0.02 mmol),
DCE (2.0 mL), air, isolated yields.

diynes could successfully react with elemental sulfur under
standard conditions, offering the desired thiophene products in
moderate to good yields (3a—3v). The functionalities such as
ester, nitrile, ketone, amide, sulfone, and silyl ether, were all
well compatible. Similarly, neither 1,6-heptadiyne nor diyne
with a phenyl substituent at one triple bond could deliver the
corresponding thiophene products by this method (3w, 3x).
We next investigated the potential synthetic utility of these
synthetic strategies. First, gram-scale reactions were performed,
and we obtained the corresponding products 2a and 3a in 64%
and 73% vyields, respectively (Scheme 2a). Then, further
derivatization of cyclopenta[c]selenophene 2a was carried out.
For example, 2a could react with NBS or NIS to give its 2,5-
dibromo or diiodo product 4a or Sa in 82% and 84% yields,
respectively.”” Besides, the ester groups of 2a could be reduced
to hydroxyl groups by lithium aluminum hydride, providing 6a

https://doi.org/10.1021/acs.orglett.1c02018
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Scheme 2. Gram-Scale Reactions and Synthetic
Transformations

a) Gram-scale reactions
AgOAc (2.0 equiv)
Co(OAC)e4H,0 (10 mol%)
K,COj3 (4.0 equiv)

MeO,C v s TBAI (1.5 equiv) Meozcmse
Me0,C™\—= DCM, 80 °C, air, 10 h Me0,C
a 2a
5.0 mmol 15.0 mmol 64%,0.91g

Cu(OAc), (10 mol%)
TMEDA (2.0 equiv)
AgOAc (2.0 equiv) MSOZC>CE>S

MeO,C =

3a
73%, 0.88 g

DCE, 60 °C, air, 12 h

b) Transformations of cyclopenta[c]selenophene 2a

Br
MeO,Co/ T 'se
MeO,C =

NBS (2.01 equiv)

LiAlH, (2.5 equiv) HO =

CHCl3, 0°C, 1h THF, 1t,Np, 2h  HO
4a Br 82% 78% 6a
L Meo2<3>GT/Se
MeO,C = 1) KOH (4.0 equiv)
2a EtOH/H,0 = 2/1
NIS (2.2 equiv) reflux, 8 h

oz
HO,C =

7a

|
MeO,C = se
MeO,C =

5a !

2) aq HCI

CHCI3/AcOH = 2/1
0°C-rt,5h

84% 92%

in 78% yield.® Moreover, the ester groups could also be
hydrolyzed to formic acid groups, furnishing 7a in good yield
of 92% (Scheme 2b).”

In order to clarify the reaction mechanism, several
mechanistic experiments were performed (Scheme 3). First,

Scheme 3. Control Experiments

AgOAc (2.0 equiv)
Co(OAC),e4H,0 (10 mol%)
K,CO3 (4.0 equiv)
TBAI (1.5 equiv)
TEMPO (3.0 equiv)

woc = L, wOe e
Me0LL™\ — DCM, 80 °C, air, 10 h Me0,C
1a 2a, 59%
AgOAc (2.0 equiv)
Co(OAc),#4H,0 (10 mol%)
K,CO3 (4.0 equiv)
TBAI (1.5 equiv) 18% D —= H/D
MeOC /= D0 (3.0 equiv) B 36%D—HID
MeosC ™+ MaoG =0 o MeoC s, ©
DCM, 80 °C, air, 10 h 2 =
ar 18%D—Hp MO
1a 2a-d-1,70% 2a-d-2, 70%

Co(OAc),#4H,0 (10 mol%)
K;CO3 (4.0 equiv)

MeOZC><ng . s TBAI (1.5 equiv) MeoEC>Oi>Se ©
Me0,C \__— DCM, 80 °C, air, 10 h Me0,C
8a 2a,20%
Co(OAC),#4H,0 (10 mol%)
K,CO3 (4.0 equiv)
MeO,C =—Ag . TBAI (1.5 equiv) MeO,C Nse ()
MeO,C~\__— Se MeO,C~ \ =
=-Ag DCM, 80 °C, air, 10 h 2

9a 2a, 36%

we carried out the reaction of la with elemental selenium
under the optimized reaction conditions in the presence of
radical scavenger TEMPO (3.0 equiv), and a 59% yield of 2a
was obtained as well (Scheme 3a). This indicated that a radical
reaction pathway may not be involved in the reaction process.
Next, when 4.0 equiv of D,O were added to the reaction
system, deuterium incorporation (18% or 36%) was observed
at the 2,5-positions or 2-position of selenophene 2a. This result
showed that the cyclization reaction may be terminated by the
hydrolysis at the 2-position of 2a (Scheme 3b). When diynyl
monosilver 8a was used, the selenophene 2a was obtained in
20% vyield in the absence of AgOAc (Scheme 3c). However,
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the yield of 2a increased to 36% when diynyl disilver 9a was
used (Scheme 3d). These results suggested that 9a may be the
intermediate of this reaction.
Based on the above experimental results and the previous
10,11 . . .
reports,” "~ a plausible reaction mechanism has been proposed
in Scheme 4. Initially, in the presence of a base, 1a reacts with

Scheme 4. Plausible Reaction Mechanism for the Formation
of 2a

Base :’ASeAg
e R G A A
MeO,C'\_— _ MeO,C \_— p, 2 == Ag
AcOH ¢] Co(ll)
1a 9a A
MeO,C./ T ge _HO MeO.C. ™ se
MeO,C = MeO,C =
Ag
B 2a

AgOAc to obtain 9a. Next, the selenium atom inserts into a
carbon—silver bond of 9a to generate intermediate A.
Subsequently, intramolecular cyclization followed by proto-
nation leads to the final product 2a.

In summary, we have developed an eflicient and atom-
economical [2 + 2 + 1] cyclization protocol for the synthesis of
diverse 3,4-substituted cyclopenta[c]selenophenes or
cyclopenta[c]thiophenes starting from easily accessible diynes
and elemental selenium/sulfur. Two C—Se/C—S bonds and
one C—C bond were rapidly constructed in one step. It is
noteworthy that the newly developed process is robust and
operationally simple because neither an anhydrous solvent nor
an inert atmosphere is necessary. This strategy provides an
appealing choice for the synthesis of 7-conjugated material
molecules.
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