Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short communication

Optimum ratio of K₂O to CeO₂ in a wet-chemical method prepared catalysts for ethylbenzene dehydrogenation

© 2015 Elsevier B.V. All rights reserved.

Yang Li^a, Yuyang Cui^a, Xiang Zhang^a, Yinghua Lu^a, Weiping Fang^a, Yiquan Yang^{a,b,*}

ABSTRACT

ity, but also prolonged the life cycle of catalysts.

^a College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

^b National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China

ARTICLE INFO

Article history: Received 16 June 2015 Received in revised form 12 August 2015 Accepted 28 September 2015 Available online xxxx

Keywords: Fe₂O₃-K₂O-CeO₂ catalyst Ethylbenzene dehydrogenation Optimum ratio Wet-chemical method

1. Introduction

Styrene, a basic raw material in petrochemical industry, is mainly produced via ethylbenzene dehydrogenation (EBDH) reaction. Traditionally, Fe₂O₃ catalysts promoted with potassium are utilized to catalyze the reaction under superheated steam circumstance. However, excess superheated steam, high reaction temperature and rapid catalyst deactivation (resulting from coke formation) led to grim economic effect for the traditional industrialized route of EBDH [1–3]. Therefore, researchers attempted to search effective EBDH catalysts that can be used under facile conditions (low ratio of steam to ethylbenzene, low temperature and the catalysts should have long service life) [4].

Recent studies have shown that transition metal promoters, such as MgO and CeO₂, could improve the catalytic activities of $Fe_2O_3-K_2O$ based catalysts [5–12]. CeO₂ cannot only accelerate styrene formation, but also prevent potassium loss and prolong the service life of catalysts [8,10]. The potential mechanism is considered to be that CeO₂ in catalysts plays a role of oxygen transporter, which is essential to catalyzing EBDH. A two-step exchange mechanism for the diffusion of oxygen in CeO₂ is described in Fig. S1 (Supporting information) [11,12]. Furthermore, potassium ferrites (e.g., $K_2Fe_2O_{34}$) are the active phases in the catalysts and their transformation states strongly affect the catalytic activities, while CeO₂ facilitates the formation of active phases and stabilize them under reaction conditions at a low water ratio. Moreover,

E-mail address: yangyqxmu@126.com (Y. Yang).

CeO₂ takes part in the Fe³⁺ + e⁻ \rightarrow Fe²⁺ redox process and has an impact on the redox characters of the catalysts, thus affecting the ethylbenzene conversion and styrene selectivity [10,13]. However, it does not mean that higher CeO₂ content leads to better catalytic activity, because Fe₂O₃ and K₂O components are also critical to catalysts (a higher

Fe₂O₃-K₂O-CeO₂ catalysts with various ratios of K₂O to CeO₂ were prepared by the wet-chemical method. Their

phase compositions, reducibility, valence states of elements and catalytic activities for ethylbenzene dehydroge-

nation were studied. The results demonstrated that when the weight ratio of K_2O : CeO₂ was 1.40, the catalyst had

highest ethylbenzene conversion and styrene selectivity, which were attributed to the optimization of active

phase content and electron transfer ability, etc. Further, higher CeO₂ content not only enhanced styrene selectiv-

timum proportions of them should be discussed. In our laboratory, we found that when the fraction of Fe₂O₃ was about 72.15 wt.%, the prepared catalysts possessed relatively high activity, so in the present work, we attempted to study the effect of various ratios of K₂O to CeO₂ on the catalysts with fixed contents of Fe₂O₃ and some other metal oxide components. A wet-chemical method was applied to fabricate Fe₂O₃–K₂O–CeO₂ based catalysts. In order to find the optimum K₂O/CeO₂ ratio for EBDH, comprehensive properties of the catalysts, including phase compositions, valence states of elements and catalytic activities, etc., were measured.

CeO₂ content means a lower content of Fe₂O₃ or K₂O). Therefore, the op-

2. Experimental

2.1. Catalyst preparation

The catalysts in the present work were composed of Fe₂O₃ (72.15 wt.%), MgO (1.02 wt.%), MoO₃ (1.09 wt.%), K₂O and CeO₂. Notice that except for K₂O and CeO₂, we introduced the promoters of MgO and MoO₃, because they could improve the styrene selectivity, and besides, MgO was also conducive to enhancing the stability of catalysts [7–9]. The mass ratio of K₂O and CeO₂ in the catalysts was referred to K/Ce-*x*, where *x* represents the weight ratio of K₂O to CeO₂, and *x* was 1.75, 1.56, 1.40 and 1.12 (the digits were calculated based on the actual

^{*} Corresponding author at: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

weight of K₂O and CeO₂ in our catalysts. We prepared about 144 g catalysts and the weight of CeO₂ was set to be 13.5, 14.5, 15.5 and 17.5 g. Because the total mass fraction of K₂O and CeO₂ was fixed, we could determine the weight of K₂O and the ratio of K₂O to CeO₂ in each catalyst). The preparation procedures were as follows: (1) Fe₂O₃ powder was mixed with an aqueous solution of Mg(NO₃)₂·6H₂O and Ce(NO₃)₃·₆H₂O to obtain a metastable suspension; (2) poured the suspension into a mixed solution of (NH₄)₆Mo₇O₂₄·4H₂O and K₂CO₃ slowly during stirring; (3) NH₄OH was used to adjust the pH value of the mixture to 8 to get a heavy slurry; (4) aged the slurry for 1 h, dried at 120 °C for 4 h and calcined at 250 °C for 6 h in air to produce a paste, then extruded which to cylindrical strips (Φ 3 × 5 mm); and (6) the final catalysts were obtained after the stripes were dried at 120 °C for 4 h and calcined at 850 °C for 4 h.

2.2. Characterization of catalysts

Crystalline phases of the prepared catalysts were analyzed using a powder X-ray diffraction (XRD) analyzer. Valence states of elements in the catalysts were studied by X-ray photoelectron spectroscopy (XPS) measurements on a PHI Quantum-2000 instrument. Temperature programmed reduction of H₂ (H₂-TPR) tests were performed under H₂/Ar flow (30 ml/min; H₂ volume fraction was 5%) in a temperature range from 50 to 900 °C with a heating rate of 10 °C/min. Consumption amount of H₂ was continuously monitored by a thermal conductivity detector in a mass spectrometer.

2.3. Catalytic activity tests

The evaluation of the catalysts for EBDH was carried out using a cylindrical fixed-bed reactor with the diameter and length of 14 and 550 mm, respectively. 5 ml catalysts (about 6.5 g), with particle diameter of 0.71–1.18 mm, were loaded into the reactor for catalyzing EBDH reaction at 610 °C. During the reaction process, a mixture of gas of ethylbenzene (2.5 ml/h) and H₂O (3.5 ml/h) was continuously injected into the reactor. Liquid hourly space velocity is 0.5/h. The end-products (containing styrene, toluene, benzene and ethylbenzene, etc.) were analyzed by gas chromatography with the assistance of a flame ionization detector.

3. Results and discussion

3.1. Phase compositions of the catalysts

CeO₂ VK₂Fe₂₂O₃₄ K/Ce-1.75 K/Ce-1.56 K/Ce-1.40 K/Ce-1.40 K/Ce-1.12 20 30 40 50 60 70 2-Theta (degree)

Fig. 1 shows the XRD spectra of various catalysts. Diffraction peaks due to $K_2Fe_{22}O_{34}$ and CeO_2 are detected from all the catalysts. The

Fig. 1. XRD patterns of the catalysts.

peaks arising from CeO₂ become stronger and sharper with a decreasing weight ratio of K₂O to CeO₂. Obviously, this can be attributed to the increasing content and grain size of CeO₂ [14]. While for the active phase of K₂Fe₂₂O₃₄, the contents in K/Ce-1.56 and K/Ce-1.40 are higher than that in K/Ce-1.75 and K/Ce-1.12, through analysis by external standard method based on the corresponding diffraction peaks (Supporting information). Kotarba et al. has pointed out that the addition of CeO₂ had a positive influence on the formation of active phases [15], and this might be an important reason why K/Ce-1.75 catalyst does not possess highest K₂Fe₂₂O₃₄ content (K/Ce-1.75 has the lowest CeO₂ loading). Therefore, the K₂O/CeO₂ ratio not only directly decides CeO₂ content in the catalysts, but also affects the amount of active phases.

3.2. H₂-TPR tests

H₂-TPR profiles are given in Fig. 2. Several peaks can be observed from each curve. For instance there are two strong peaks at about 450 and 750 °C. They are corresponding to the reduction process of Fe³⁺ → Fe²⁺ (low temperature peak) and Fe²⁺ → Fe (high temperature peak) [4,6,16]. As a whole, higher CeO₂ content hinders the reducibility of Fe³⁺ (Fe₂O₃) to Fe²⁺ (Fe₃O₄) [10]. Furthermore, two intense hydrogen consumption bands can be observed at about 475 and 780 °C (the circled zones in Fig. 2). They result from the reduction of surface oxygen and bulk oxygen from CeO₂ (CeO₂ → Ce₂O₃) [13,17]. Because CeO₂ (Ce⁴⁺) and Ce₂O₃ (Ce³⁺) have similar crystal structures (CaF₂-typed), Ce⁴⁺ and Ce³⁺ are easy to coexist.

Copresence of Fe³⁺ and Ce³⁺ is possible on the basis of the reduction potential of the Fe^{2+/3+} and Ce^{3+/4+} couples. Significantly, the combined action of Fe³⁺ and Ce³⁺ plays a positive role in EBDH: during EBDH reaction, α -hydrogen of ethylbenzene attacks the acid site of the catalysts (Fe³⁺) and simultaneously, β -hydrogen attacks the basic site (Ce³⁺), as shown in Fig. S2 [10,18,19], while positive charge on α carbon at the transition state can be stabilized by the aromatic ring. Based on the point of view mentioned above, K/Ce-1.40 and K/Ce-1.12 catalysts may have better catalytic activity, because their relatively high CeO₂ content is beneficial for the keeping of Fe³⁺ (instead of being reduced to Fe²⁺) and the coexisting of Fe³⁺ and Ce³⁺.

3.3. XPS measurements

The reaction mechanism of EBDH catalyzed by $Fe_2O_3-K_2O-CeO_2$ catalysts can be divided into two types: (a) direct dehydrogenation mechanism and (b) oxygen transfer dehydrogenation mechanism. Schematic expressions of these potential mechanisms are shown in Fig. S3. As metal oxide with variable valence, CeO_2 can introduce a certain amount of oxygen vacancies to the catalyst, thus optimizing the activity of lattice oxygen, increasing electron transfer channels and making the dehydrogenation reaction easier to happen [10,20]. Therefore, it is necessary to detect the valence states of O and Ce elements in the catalysts.

Oxygen species have two spectral peaks in O 1s XPS spectrograms of Fe-K-Ce oxide based catalysts see Fig. 3: the peak at ~530.5 eV is ascribed to lattice oxygen of metal oxide and that at ~532.5 eV arises from adsorbed oxygen [17]. The Ce 3d XPS profiles in Fig. 4 are more complicated due to mixing of Ce 4f levels with O 2p states. Following the previous literature [17,20], the electronic transitions in Ce $3d_{3/2}$ and Ce 3d_{5/2} levels can be divided into several sets of features ground as U and V lines, respectively. The U'''/V''' doublet is associated with primary photo emission from Ce⁴⁺. The U"/V" and U/V doublets result from electron transfer from a filled O 2p orbital to an empty Ce 4f orbital. The U'/V' doublet is caused by photo emission from Ce³⁺ cations. These evidences imply that cerium is present in the form of hybrid oxidation states of Ce^{3+} and Ce^{4+} [17,20]. This coincides well with the result obtained from catalyst TPR curves. Relatively, K/Ce-1.40 catalyst has stronger U"'/V"' and U/V doublets, corresponding to an effective electron transfer ability.

Fig. 2. H₂-TPR profiles of the catalysts.

3.4. Activity studies

The activities of the produced catalysts for EBDH are shown in Fig. 5 and Fig. S4. In the initial stage [7], the catalytic activities were not stable due to the formation of a thin layer of carbonaceous deposits. Thus for a better comparison, the activity data obtained after 12 h (reaction time) were considered. With decreasing K₂O/CeO₂ ratio, both the conversion of ethylbenzene and the yield of styrene increase first and then decrease. As a consequence, K/Ce-1.40 catalyst exhibits the highest ethylbenzene conversion of 72.08% and styrene vield of 67.89%, while its styrene selectivity is slightly lower than that of the catalyst with K/Ce-1.12 (95.06% vs 95.43%). The catalytic activities of these catalysts are reasonable based on the above discussions of XRD, H2-TPR and XPS measurements. Besides, it is worth mentioning that the mechanical mixing method (using metal oxides as raw materials. Its simplicity makes it useful for industrial productions of EBDH catalysts) prepared catalysts with the same designed-compositions (metal oxide contents in theory) of K/Ce-1.12 displays moderate catalytic activity: the

Fig. 3. O 1s XPS profiles for the catalysts.

ethylbenzene conversion, styrene selectivity and styrene yield are only about 67.54, 94.45 and 63.79%, respectively. It indicates that the wetchemical method is superior for the preparation of EBDH catalyst.

In addition, we measured the conversion of ethylbenzene as a function of time-on-stream during EBDH reactions and found that for the catalysts with higher CeO₂ content, i.e., K/Ce-1.40 and K/Ce-1.12 catalysts, the conversion retention was ~98% after 90 h, while the catalysts containing lower CeO₂ content had notably reduced conversion as the reaction progresses (Fig. S4), once again suggesting that CeO₂ is beneficial for preventing potassium loss and prolong the service life of catalysts [8,10]. Except for that, as illustrated in Fig. 5, higher CeO₂ loading also improves the styrene selectivity.

4. Conclusions

 $Fe_2O_3-K_2O$ based catalysts with different ratios of K_2O to CeO_2 were prepared. Their phase compositions, valence states of elements and

Fig. 4. Ce 3d XPS profiles for the catalyst.

Fig. 5. Catalytic activity of the prepared catalysts: conversion of ethylbenzene, selectivity toward styrene and yield of styrene. Each symbol stands for the specific value measured during EBDH reactions and the digits are the average values.

catalytic activities, etc., were studied. The results demonstrated that when the weight ratio of K_2O to CeO_2 was 1.40, the catalyst displayed the highest ethylbenzene conversion and styrene yield, owing to the optimization of active phase content and electron transfer ability. Further, higher CeO_2 content not only enhanced styrene selectivity (as a result, K/Ce-1.12 had the best selectivity), but also prolonged the life cycle of catalysts.

Acknowledgments

The authors would like to thank the financial support from Science and Technology Department of Fujian Province (No. 2012H6020).

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx. doi.org/10.1016/j.catcom.2015.09.027.

References

- [1] E.H. Lee, Catal. Rev. 8 (1973) 285-305.
- [2] W.D. Mross, Catal. Rev. 25 (1983) 591-637.
- [3] B. Hu, Z. Zeng, X. Yang, Nucl. Instrum. Meth. B 76 (1993) 178–179.
- [4] M.S. Ramos, M.S. Santos, L.P. Gomes, A. Albornoz, M.C. Rangel, Appl. Catal. A Gen. 341 (2008) 12–17.
- [5] N.R. Shiju, M. Anilkumar, S.P. Gokhale, C.S. Gopinath, B.S. Rao, C.V.V. Satyanarayana, J. Catal. 230 (2005) 484–492.
- [6] X. Ge, M. Li, J. Shen, J. Solid State Chem. 161 (2001) 38-44.
- [7] F. Cavani, F. Trifirò, Appl. Catal. A Gen. 133 (1995) 219-239.
- [8] T. Hirano, Appl. Catal. 28 (1986) 119–132.
- [9] T. Hirano, B. Chem. Soc. Jpn. 59 (1986) 1653-1655.
- [10] A. Trovarelli, C. de Leitenburg, M. Boaro, G. Dolcetti, Catal. Today 50 (1999) 353–367.
- [11] W. Zhan, Y. Guo, X. Gong, Y. Guo, Y. Wang, G. Lu, Chin. J. Catal. 35 (2014) 1238–1250.
- [12] H.Y. Li, H.F. Wang, Y.L. Guo, G.Z. Lu, P. Hu, Chem. Commun. 47 (2011) 6105–6107.
- [13] R. Cracium, Solid State Ionics 110 (1998) 83-93.
- [14] W. Wang, Y. Li, X. Zhang, W. Fang, Y. Yang, Catal. Commun. 69 (2015) 104–108.
- [15] A. Kotarba, W. Bieniasz, P. Kuśtrowski, K. Stadnicka, Z. Sojka, Appl. Catal. A Gen. 407 (2011) 100–105.
- [16] A.C. Oliveira, J.L.G. Fierro, A. Valentini, P.S.S. Nobre, M.C. Rangel, Catal. Today 85 (2003) 49–57.
- [17] K.N. Rao, B.M. Reddy, B. Abhishek, Y.H. Seo, N. Jiang, S.E. Park, Appl. Catal. B Environ. 91 (2009) 649–656.
- [18] R.J. Balasamy, B.B. Tope, A. Khurshid, A.A.S. Al-Ali, L.A. Atanda, K. Sagata, M. Asamoto, H. Yahiro, K. Nomura, T. Sano, K. Takehira, S.S. Al-Khattaf, Appl. Catal. A Gen. 398 (2011) 113–122.
- [19] J.C. Wu, C.S. Chung, C.L. Ay, I. Wang, J. Catal. 87 (1984) 98-107.
- [20] B.M. Reddy, K.N. Rao, G.K. Reddy, A. Khan, S.E. Park, J. Phys. Chem. C 111 (2007) 18751–18758.