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ABSTRACT: The combination of a Lewis acid-catalyzed inverse electron-
demand Diels−Alder (IEDDA) reaction with a photoinduced ring-opening
(PIRO) reaction in a domino process has been established as an efficient
synthetic method to access medium-sized carbocycles. From readily available
electron-rich and electron-poor phthalazines and enamines, respectively, as
starting materials, various 9- and 11-membered carbocycles were prepared. This
versatile transition-metal-free tool will be valuable for broadening the structural
space in biologically active compounds and functional materials.

Medium-sized carbon rings (7- to 11-membered) are the
structural core motif of various biologically active

natural products and medicinally effective synthetic com-
pounds.1,2 The challenge in creating these medium-sized rings
is mostly due to both the ring strain (enthalpy) and the
competition between intra- and intermolecular reactions
(entropy) during their preparation.3 Olefin metathesis has
been shown to be a very effective method to build these
medium-sized rings with either molybdenum (Schrock’s)4,5 or
ruthenium (Grubb’s)6,7 catalysts.8,9 Additionally, it is possible
to form medium-sized carbocycles using other metal-catalyzed
cyclization, cross-coupling, ring-expansion, and ring-opening
reactions as well as free-radical cyclization reactions that rely
on metals, such as gallium,10 platinum,11,12 cobalt,13,14

samarium,15−19 molybdenum,20 ruthenium,21,22 indium,23

manganese,24,25 iron,26,27 chromium,28 copper,29 palladi-
um,30,31 silver,32,33 or gold.32,34 Further, Nicolaou et al. used
a McMurry coupling of a dialdehyde with titanium(III)-
chloride in the presence of a zinc−copper couple to build a
medium-sized ring system in the total synthesis of taxol.35 An
efficient metal-free method would provide a convenient
alternative to access such systems, especially in view of the
shortage of resources and sustainability.
In the past, we established bidentate Lewis acids (BDLA) as

effective catalysts for the inverse electron-demand Diels−Alder
(IEDDA) reaction of diazines with various dienophiles.36 After
the initial IEDDA step, a reactive quinodimethane 9 is formed
that serves as the ideal base for transformations to various
products, such as substituted naphthalenes or complex oligo-
cyclic alkaloid-type structures.37 The specific outcome of the
reaction depends on the conditions chosen and the
substitution pattern of the dienophile.38−41 Recently, we
showed that a photoinduced ring-opening (PIRO) reaction
of the quinodimethane intermediate 9 by irradiation leads to

ortho-substituted styrenes. The PIRO reaction of this quinodi-
methane intermediate 9 proceeds according to the Wood-
ward−Hoffmann rules in a 10π conrotatory pericyclic ring-
opening.42,43 We envisioned that the use of cyclic enamines
should deliver medium-sized carbocycles in the same fashion.
This would present a metal-free alternative to otherwise
difficult-to-prepare targets. Based on our bidentate Lewis acid-
catalyzed domino IEDDA/PIRO reaction, we present a
modular and transition-metal-free strategy for the synthesis
of medium-sized ring systems (Scheme 1).

Received: January 21, 2021
Published: February 25, 2021

Scheme 1. Domino Lewis Acid-Catalyzed Inverse Electron-
Demand Diels−Alder and Photoinduced Ring-Opening
Reaction with Phthalazines 1 and Cyclic Enamines 2
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To realize such a strategy, the BDLA catalyst was applied to
phthalazine (1a) and enamine 2a under irradiation. First, the
reaction mixture was subjected to 448 nm light at different
temperatures (see the Supporting Information). Fortunately,
the desired 9-membered ring system 4a was isolated with the
eliminated product 5a as only a minor component. The best
yield of 73% was obtained at 80 °C. At higher temperatures,
the eliminated IEDDA product 5a was predominantly formed,
decreasing the yield of the photo product 4a. At temperatures
below 80 °C, the IEDDA reaction did not proceed, and the
starting material was recovered.
Subsequently, the wavelength was scanned at the optimized

temperature of 80 °C. The experiments show that yields above
70% can be achieved with an irradiation between 405 and 500
nm, with an optimum irradiation at 425 nm. As previously
shown, the BDLA catalyst was partially decomposed at shorter
wavelengths (405 nm), significantly reducing the yield.42

Longer wavelengths between 425 to 500 nm only marginally
changed the yield. Hence, a temperature of 80 °C and an
irradiation wavelength of 470 nm were chosen as the optimal
reaction conditions. At 470 nm, the product was only isolated
in a 1% lower yield than at 425 nm, but the purification was
much easier due to the formation of fewer side products. As a
range of wavelengths from 425 to 500 nm was tolerated, two
LEDs were used in some cases to increase the energy density.
To show the scope and high modularity of the IEDDA/

PIRO reaction, the reaction was performed with differently
substituted starting materials. In the case of 5,8-difluoroph-
thalazine (1b), we obtained only the eliminated product under
the standard reaction conditions (Figure 1). Due to the lower
energy of the lowest unoccupied molecular orbital (LUMO),
the IEDDA reaction was expected to proceed much faster.
Therefore, the conditions for 5,8-fluorophthalazine (1b) were
amended to room temperature and an irradiation of 448 and
470 nm. This way, the IEDDA reaction was slower and the

PIRO reaction could compete with the elimination. With the
same refinement, the reaction of 6-fluorophthalazine (1c) was
performed at 30 °C with an irradiation of 425 and 470 nm. For
the same reason, the IEDDA/PIRO reactions with 6-
(trifluoromethyl)phthalazine (1d) and 6-chlorophthalazine
(1e) were done at the same irradiation wavelengths and
lower temperatures compared to those of the unsubstituted
phthalazine (1a). Due to the lower reaction temperatures for
the electron-poor phthalazines 1b−d, the corresponding
eliminated products were not obtained. In these cases, the
remaining phthalazine starting materials 1b−d were recovered.
In case of 6-chlorophthalazine 1e, the reaction temperature
had to be raised to 50 °C for an optimal yield. This produced
the eliminated product 5e as a side product. For all electron-
deficient phthalazines 1b−e, the corresponding 9-membered
carbocycles 4b−e were obtained in good to very good yields.
The IEDDA/PIRO reaction with the electron-rich 6-
methoxyphthalazine (1f) had to be performed at 130 °C and
an irradiation of 425 and 448 nm. However, the corresponding
photo product 4f was only obtained in a yield of 5%. Because
of the higher LUMO energy of the 6-methoxyphthalazine (1f),
more energy (higher temperature) was needed for the initial
IEDDA reaction, favoring the elimination reaction. Addition-
ally, we used 6-methylphthalazine, 6,7-dimethylphthalazine,
and 6,7-dimethoxyphthalazine in the IEDDA/PIRO reaction.
However, only the starting materials were reisolated in all three
cases. Due to the energetically higher LUMO energy of the
phthalazine derivatives, the IEDDA reaction did not proceed
for these starting materials.
Next, different cyclic enamines 2b−f were screened (Figure

2). All enamines 2a−f were synthesized following a known
procedure reported by Thompson et al.44 The PIRO reaction
proceeded smoothly with unsubstituted 1-(1-cyclopenten-1-
yl)pyrrolidine (2b). Due to the lower steric hindrance of
enamine 2b, it was possible to obtain the (7Z)-bicyclo[7.4.0]-
trideca-1(13),7,9,11-tetraen-3-one (4g) product in an excellent
yield of 93%. Additionally, electron-rich and electron-deficient

Figure 1. Screening of the phthalazines 1a−f in the IEDDA/PIRO
reaction with enamine 2a. Reaction conditions are as follows:
phthalazines (1a−f) (1.0 mmol, 1.0 equiv), BDLA (50 μmol, 5.0 mol
%), enamine 2a (2.9 mmol, 2.9 equiv), and dry solvents (10 mL, 100
mM). aThe corresponding eliminated product was not obtained under
these reaction conditions. bIsolated yield as mixture of C6 and C7
constitutional isomers.

Figure 2. Screening of the cyclic enamines 2b−f in the IEDDA/PIRO
reaction with phthalazine 1a. Reaction conditions are as follows:
phthalazine (1a) (1.0 mmol, 1.0 equiv), BDLA (50 μmol, 5.0 mol%),
enamines 2b−f (2.9 mmol, 2.9 equiv), and dry solvents (10 mL, 100
mM). cBDLA (0.10 mmol, 10 mol %) was used as a catalyst.
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enamines could be used in the IEDDA/PIRO reaction; 1-(6-
methoxy-3H-inden-1-yl)pyrrolidine (2c) and 1-(6-methly-3H-
inden-1-yl)pyrrolidine (2d), respectively, were converted to
the corresponding photo products 4h and 4i in good yields.
For the 5-bromo-substituted enamine 2e, the reaction
temperature was increased to 130 °C and the irradiation was
done at 425 and 470 nm. Again, the elimination reaction was
preferred in this case due to the harsher conditions, and the
corresponding photo product 4j was only isolated in a yield of
7%.
Enamines with an increased ring size would give access to

even larger carbocycles. For example, the IEDDA/PIRO
reaction of phthalazine (1a) and 1-(1-cyclohepten-1-yl)-
pyrrolidine (2f) provided the 11-membered carbocycle 4k,
although in lower yields and as both double-bond isomers. To
obtain a better understanding of why the synthesis of 4k
yielded both isomers and that of 4g yielded a single isomer, a
computational analysis was conducted. Therefore, conformer
ensembles of compounds 4k_cis, 4k_trans, 4g_cis, and the
theoretical 4g_trans were computed with the Conformer−
Rotamer Ensemble Sampling Tool (CREST)45,46 developed by
Grimme and co-workers. The structures of the conformer with
the lowest energy were further optimized on the PBE047 level
of theory with a def2-TZVP48 basis set and the D3-BJ49,50

dispersion correction. High-level single-point corrections were
computed at the DLPNO−CCSD(T)51 level, also using the
def2-TZVP basis set. This computational analysis showed that
the difference in ΔG° between 4k_cis and 4k_trans was
merely 0.37 kcal/mol. For 4g and its theoretical trans-isomer,
this difference increased to 4.20 kcal/mol due to the higher
ring strain, clearly favoring the formation of a bowl-shaped
structure of the cis-isomer over the less favorable trans-isomer
(see the Supporting Information for more details). The lower
yield can be rationalized by the decomposition of the BDLA
over time, as the IEDDA reaction proceeded much slower.42

Furthermore, both 1-(1-cyclohexen-1-yl)pyrrolidine and 1-(1-
cycloocten-1-yl)pyrrolidine were tested in the IEDDA/PIRO
reaction. However, these substrates did not react in the
IEDDA, probably due to the increased steric demand of these
enamines. In previous publications, we also showed that these
enamines need higher temperatures to undergo the IEDDA
reaction and form the corresponding eliminated products.38,52

Therefore, we also tested the IEDDA/PIRO reaction with the
two isomeric six-membered enamines 1-(3,4-dihydronaphth-1-
yl)pyrrolidine and 1-(3,4-dihydronaphth-2-yl)pyrrolidine.
These reaction partners should have more planar ring systems
than 1-(1-cyclohexen-1-yl)pyrrolidine, reducing the steric
hindrance. However, the IEDDA reaction also did not proceed
in these cases.
The method can easily be carried out on a gram scale. The

reaction of phthalazine (1a) and enamine 2b was set up in a
Schlenk tube, and the reaction mixture was irradiated with two
LEDs (470 and 500 nm). However, the larger diameter of the
reaction vessel reduced the penetration depth of the light,
favoring side reactions. Hence, the photo product 4a was
obtained in a lower yield of 57% compared to that of the small
scale.
Additionally, the IEDDA/PIRO reaction of phthalazine (1a)

and enamine 2a was performed with the air-stable variant of
the bidentate Lewis acid catalyst recently developed by us (see
Supporting Information for details).53 In this case, the reaction
temperature was slightly increased to 90 °C to speed up the
exchange of the coordinated pyridazine on the bidentate Lewis

acid with the phthalazine reactant (1a). Nevertheless, the
desired photo product 4a was isolated in a 61% yield.
Based on previous studies of the IEDDA reaction, the

following mechanistic proposal is put forward for the IEDDA/
PIRO reaction. In the first step of the catalytic cycle, the
bidentate Lewis acid 3 coordinates to the phthalazine (1a) to
form complex 6.37 The activated phthalazine can now react
with an electron-rich dienophile, in this case enamine 7, to
form the intermediate 8 via an IEDDA reaction. The
elimination of nitrogen regenerates the BDLA and leads to
the quinodimethane intermediate 9.37,40 For the ring-opening,
a visible-light-promoted opening of the quinodimethane
intermediate 9 to enamine 10 is hypothesized.42 With 10π
electrons involved, this photo electrocyclization reaction has to
proceed conrotatory according to the Woodward−Hoffmann
rules.43,54 The cyclic enamine 10 is transformed to the
corresponding cyclic ketone 11 during aqueous workup
(Scheme 2).

In summary, we established the IEDDA/PIRO reaction of
phthalazines and cyclic enamines as a powerful tool for the
synthesis of medium-sized carbocycles. The scope of this
reaction was shown by screening differently substituted
phthalazines 1a−f and cyclic enamines 2a−f. We demonstrated
that the electron-rich enamines 2c and 2d and especially the
electron-deficient phthalazines 1b−e provided the correspond-
ing medium-sized carbocycles in good to very good yields.
However, the electron-rich phthalazine 1f and electron-
deficient enamine 2e only reacted sluggishly in the domino
IEDDA/PIRO reaction. By using enamines with different ring-
sizes, it was shown that sterics also influence the IEDDA/
PIRO reaction. Over all, the IEDDA/PIRO reaction offers a

Scheme 2. Catalytic Cycle of the Domino Bidentate Lewis
Acid-Catalyzed IEDDA Reaction of Phthalazine (1a) and an
Electron-Rich Dienophile 7a

aThe catalytic cycle was followed by the photoinduced ring-opening
(PIRO) reaction.
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new transition-metal-free and stereoselective synthesis strategy
for 9- and 11-membered carbocycles, which will contribute to
the efficient expansion of the molecular space for biological
and materials applications.55−57
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