CONFORMATIONS OF TWO ISOMERIC MORPHOLINOETHYL-1,2,4-TRIAZOLES

Jean-Pierre Hénichart ^{* 1}, Raymond Houssin and Brigitte Lablanche Institut de Chimie Pharmaceutique, Université de Lille II rue du Professeur Laguesse, 59045 Lille Cedex (France)

(Received in UK 6 October 1977; accepted for publication 18 November 1977)

In the field of our work on histamine-like substances^{2,3}, we prepared two isomeric morpholinoethyl-1,2,4-triazoles: the 1-(2-morpholinoethyl)-1,2,4-triazole 1 and the 4-(2-morpholinoethyl)-1,2,4-triazole 2. It was necessary to determine the conformation of 1 and 2 in solutionto establish the possible relationships between their molecular structure and their pharmacodynamical activity on specific receptor sites⁴.

The 1-substituted compound <u>1</u> was prepared by cyclisation of a mixture of 3-dimethylamino-2-azaprop-2-en-ylidendimethylammonium chloride^{5,6} and morpholinoethylhydrazine. The cyclising condensation of formylhydrazine with 2-morpholinoethylisothiocyanate gave the 4-(2-morpholinoethyl)-1,2,4- Δ -2-triazoline-5-thione and the hydrogenolysis of the thione group led to <u>2</u>.

The ¹H NMR spectra of <u>1</u> and <u>2</u> in CCl₄ are strictly similar (table I). If the nonequivalence of the protons a and b of <u>1</u> could correspond to the dissymetry of the molecule⁷, we could expect the corresponding protons a' and b' for 2 to be equivalent.

	¹ Η NMR (δ in ppm)				13 _C Bro	NMR (ad band	(ð in ppm) spectrum
		CC1,	CDBr 2	D_0 ((dihydrochlorides)		
	Int. ref.: TMS			Int. ref.: (CH ₃) ₃ Si(CH ₂) ₃ SO ₃ Na			
$\begin{bmatrix} a & & & & & \\ H & & & & & \\ H & & & & & \\ H & & & &$	(a) (b) (c) (d) (e) (f)	7.70;s;i=1 8.08;s;i=1 4.20;t;i=2 2.70;t;i=2 2.40;m;i=4 3.52;m;i=4	7.90;s;i=1 8.24;s;i=1 4.32;t;i=2 2.80;t;i=2 2.45;m;i=4 3.65;m;i=4	8.78;s;i=1 9.66;s;i=1 3.93;t;i=2 3.80;t;i=2 3.55;m;i=4 4.98;m;i=4	(1) (2) (3) (4) (5) (6)	146.94 47.64 56.74 65.87 54.69	and 144.86
$ \begin{vmatrix} H^{a} & 4 & e_{3} & f \\ H^{b} & 2 & c_{3} & CH_{2}CH_{2} \\ H^{b} & CH_{2}CH_{2} & CH_{2}CH_{2} \\ H^{b} & CH_{2}CH_{2} & CH_{2}CH_{2} \\ H^{b} & CH_{2}CH_{2} \\ H^{b} & 2 \\ \end{vmatrix} $	(a') (b') (c') (d') (e') (f')	7.70;s;i=1 8.08;s;i=1 4.20;t;i=2 2.70;t;i=2 2.40;m;i=4 3.52;m;i=4	8.30;s;i=2 4.22;t;i=2 2.72;t;i=2 2.53;m;i=4 3.67;m;i=4	7.48;s;i=2 3.98;t;i=2 3.72;t;i=2 3.51;m;i=4 4.90;m;i=4	(1') (2') (3') (4') (5')	146.40 43.64 57.39 66.22 55.01	

$$J_{cd} = J_{c'd'} = 6 Hz$$

Table I

We can explain the identical shifts for a and a' on one hand and for b and b' on the other hand by the establishment of a hydrogen-bonding between b (or b') and the morpholinic nitrogen atom, giving analogous structure for 1 and 2 (scheme I).

Scheme I

This postulated configuration is in accordance with the dihedral angle between vicinal protons of the side chain determined by the way of Karplus relationship⁸. The ${}^{3}J_{cd}$ datum (6 Hz) corresponds to a theoretical dihedral angle value of 30° (scheme II). In this configuration, it is possible to evaluate the distance C-H···N (d#1,5 Å) corresponding to a strong hydrogenbonding⁹. This spatial interaction disappears when a more polar solvent is used, the protons a' and b' becoming equivalent for 2 but a and b remaining different for 1; the example of CDBr₃ as a ¹H NMR solvent is given in table I. Similar features are noted when the nitrogen atom of morpholin is protonated: the above mentioned hydrogen-bonding cannot then exist; the C-H free from chelation undergoes the isotopic exchange with D_2O , illustrating so the acidic character of this proton (table I, 13 C NMR).

REFERENCES AND NOTES

- 1 Researcher at INSERM, present address: Unité U 16, Place de Verdun, 59045 Lille Cedex (France)
- J.P. Hénichart, R. Houssin, C. Lespagnol, J.C. Cazin, M. Cazin and F. Rousseau, Chim. Thér., 2 8, 358 (1973)
- J.P. Hénichart, R. Houssin and C. Lespagnol, Eur. J. Med. Chem., 9, 436 (1974) 3
- 4 It was shown that two isomeric triazolic compounds could have very different and sometimes antagonistic pharmacodynamical properties: W.R. Gibson, E.E. Swanson and D.B. Meyers, J. Am. Pharm. Ass., 47, 778 (1958); C. Ainsworth, N.R. Easton, M. Livezey, D.E. Morrison and W.R. Gibson, J. Med. Pharm. Chem., 5, 383 (1962)
 H. Gold, Angew. Chem., 72, 956 (1960)
 I-(2-morpholinoethyl)-1,2,4-triazole was prepared also by us in good yield by alkylation of
- the 1,2,4-triazole sodio-derivative with 1-chloro-2-morpholinoethane. Since 1,2,4-triazole may exist in two tautomeric forms in solution, this technique did not permit to determine

a priori the position of the side chain³. In fact, the physical properties of this product are identical to these of 1 (and different from these of 2)

- We assigned to the proton \overline{b} the signal appearing at lower field, referring to the ¹H NMR 7 study of 1-methy1-1,2,4-triazole: R. Jacquier, M.L. Roumestant and P. Viallefont, Bull. Soc. Chim., 7, 2630 (1967)
- M. Karplus, J. Chem. Phys., <u>30</u>, 11 (1959)
- The existence of a chelation involving the triazolic protons is corroborated by a Goldstein's radiocrystallographical study. This author showed that the C-H of the triazole nucleus were engaged in intermolecular hydrogen-bondings: P. Goldstein, J. Ladell and G. Abowitz, Acta Cryst., B 25, 135 (1969)