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yl group enhances the rate of epoxide ring opening is also 
known.* The same stereochemical situation present in trip- 
tolide, an epoxide ring and a hydroxyl group two positions 
removed on the same face of a six-membered ring, may also 
be invoked to explain the metabolism induced binding3 of 
carcinogenic polycyclic aromatic hydrocarbons to cellular 
macromolecules. We herein describe the synthesis and reac- 
tions of the title compound, a potential metabolite from the 
environmental carcinogen benzo[a]pyrene (BP). 

Our interest in this synthesis was stimulated by the key 
observation of Borgen et al.4 who demonstrated that trans- 
7,8-dihydroxy-7,8-dihydro-BP (2a) was much more exten- 
sively bound to DNA on further metabolism by liver micro- 
somes than were either of two other metabolic dihydrodiols 
or BP itself. The above observation was confirmed by Sims 
et al.5 who suggested diol epoxide 3 as the active binding 
agent and claimed its synthesis6 by the action of m-chloro- 
peroxybenzoic acid on diol 2a. Although the question of rel- 
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20S0, identical with natural material, mp 172-174', ac- 
cording to chromatographic and spectral comparisons. 
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Synthesis of (&)-7@,8a-Dihydroxy-9@,1Ofl-epoxy-7,8,- 
9,10-tetrahydrobenzo[s]pyrene, a Potential Metabolite of 
the Carcinogen Benzo[a]pyrene with Stereochemistry 
Related to the Antileukemic Triptolides 

Sir: 
The antileukemic diterpenoid triepoxides, triptolide and 

tripdiolide (l), have been suggested' to effect their high bi- 
ological activity through alkylation of biologically impor- 
tant macromolecular thiols at C-9 of the 9,ll-epoxide. An- 
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chimeric assistance by the proximate 146-hydroxyl group 
markedly enhances the rate of adduct formation between 1 
and simple thiols. A steroid in which a neighboring hydrox- 

2a 3 

ative stereochemistry between the hydroxyl groups and the 
9,lO-oxirane was not considered in this study,5 there is 
ample precedent to expect that epoxidation should occur on 
the face of the molecule which bears the 8-OH' to produce 
the isomer of diol epoxide 3 in which anchimeric assistance 
of nucleophilic attack on the oxirane by the 7-OH is impos- 
sible as the oxirane and 7-OH are trans. The corresponding 
epimer of triptolide has low biological activity and is 20- 
fold slower on reaction with propanethiol.' The isomeric 
sterol epoxides display an 18-fold difference in rates of re- 
action with azide.* 

trans- 1,2-Dihydroxy- 1,2-dihydr~naphthalene~ (2b) was 
chosen as a simple model compound to test possible syn- 
thetic routes to the isomers of the BP diol epoxide 3. In so- 
lution, the dihydrodiol prefers the conformation in which 
the hydroxyl groups occupy pseudo-equatorial positions? 
the conformation in which both hydroxyl groups should act 
in concert7 to direct epoxidation such that the 1-OH and 
the oxirane are trans (Scheme I). Reaction of 2b with m -  
chloroperoxybenzoic acid (CH2C12, oo, 2 hr) cleanly pro- 
duced I&2a-dihydroxy-3a,4a-epoxy-1,2,3,4-tetrahydro- 
naphthalenelo (4b) in 60% yield (mp 153-155'). As antici- 
pated, the reaction was highly stereoselective, and only the 
stereoisomer 4b was isolated. 

Scheme I 

OH 
5a b 

6a, b 

a = BP series 
b = naphthalene series 
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Synthesis of the stereoisomeric diol epoxide (6b, Scheme 
I,) from 2b presented a synthetic challenge. Fortunately, 
approach of N-bromoacetamide (NBA) to the diol sub- 
strate occurs at the same face of the molecule as does 
peroxyacid. Reaction of 2b with NBA (20% aqueous-THF, 
Oo, 3 hr) provided the halohydrin 5b (1  54-1 5 6 O  dec) in 79% 
yield." None of the undesired isomer in which the 2-OH 
and 3-Br are trans was detected. Cyclization of 5b to the 
diol epoxide 6b12 was accomplished with Amberlite IRA- 
400 (OH form) in dry T H F  thus generating (95%) the trip- 
tolide like stereochemistry. The trimethylsilyl ethersi3 of 4 
and 6 were found particularly useful in obtaining spectral 
data. 

Peroxyacid epoxidation of the BP dihydrodiol 2a was 
conducted5 exactly as described (CHCl3, Oo for 48 hr) ex- 
cept on much larger scale with synthetic di01.I~ Direct sily- 
lation of the crude reaction mixture in the cold followed by 
mass spectrometry indicated the presence of diol epoxide 3 
(presumably 4a). Work-up as described5 resulted in  sub- 
stantial production of a m-chlorobenzoic acid adduct.l 
Preparative TLC as described5 did not allow identification 
of 3 by mass spectrometry after silylation. Although epox- 
idation in CHCI:, does appear to proceed cleanly, conditions 
for isolation of pure 3 have yet to be found.24 Rigorous as- 
signment of the stereochemistry in 3 and the adduct will re- 
quire further study. 

Synthesis of the triptolide like isomer (6a) proceeded as 
described in the model studies; the halohydrin 5aI6 (94% 
from 2a, 128-130° dec) was cyclized to the diol epoxide 
6ai7 (85% yield, 226-228O dec) either by treatment with 
the resin or by reaction with 1 equiv of NaH in T H F  at 0'. 
This compound is extremely reactive but can be stabilized 
as the disilyl ether.I8 

Relative reactivity of the diol epoxides 4b (0.22 M-'  
sec-I), 6b (0.10 M-I sec-'), as well as phenanthrene 9,lO- 
oxideiy (2.1 sec-I) was established by measurement of 
the second-order rate constants for reaction with p-ni- 
trothiophenolate in water-alcohol.20 Failure to observe en- 
hanced reactivity of 6b relative to 4b in the naphthalene se- 
ries may be a consequence of conformational effects in 
water-alcohol. Notably, both 1 and the sterol epoxide's2 are 
locked in the conformation for which hydrogen bonding to 
the epoxide is possible. Accurate comparison of the reactivi- 
ty of the diol epoxides 4b and 6b (naphthalene-series) with 
6a in water-alcohol is not possible due to a high solvolysis 
rate for 6a. However, 6a is estimated to be more than two 
orders of magnitude more reactive than 4b and 6b. Further 
studies are i n  progress to establish the origin of this en- 
hanced reactivity. In tert-butyl alcohol solvent, a high de- 
gree of anchimeric assistance has been detected in both the 
naphthalene and BP s e r i e ~ . ~ ~ . ~ '  

Examination of the mutagenicity of metabolites of BP 
(phenols and arene oxides) has established that BP 4,s- 
oxide is highly mutagenic toward histidine dependent Sal- 
monella typhimurium and 8-azaguanine sensitive Chinese 
hamster V-79 cells in culture.2i Preliminary studies of diol 
epoxide 6a indicate it is markedly more active (>40 times) 
than BP 4,5-oxide in these tests. In contrast, BP 7,8-oxide is 
the only metabolite of the phenols and arene oxides which 
have been tested22 that displays marked carcinogenicity in 
vivo. Since BP 7,8-oxide may be first hydrated to diol 2a 
and then converted to diol epoxide 6a prior to initiation of 
the oncogenic event, an attractive hypothesis for the mecha- 
nism of carcinogenesis by BP emerges. Diol 2a functions as 
a stable precarcinogen in  the body while the highly reactive 
ultimate carcinogen (6a) is generated in situ, possibly by 
drug metabolizing enzymes in the nuclear envelope sur- 
rounding DNA. We are presently attempting to establish 
whether 2a and 6a are carcinogens in vivo.23-25 
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&-OH 6 5.98, C8-OH 5.75, H7 4.83, H8 4.00. Hs 3.91, Hio 5.24, He 

DMSO containing the diol epoxides: 4a (0.43 W' sec- P ), 6a (70 M' 

Cyclopropa[4,5]benzocyclobutene1 

Sir: 
Benzene has been bent,2,3 t ~ i s t e d , ~  and ~ t r a i n e d . ~ - ~  As a 

system it has shown that its properties are remarkably resil- 
ient to such treatment. One of the more acute sources of 
strain has been provided by annelating benzene with small 
rings. Initial interest was in the fusion of four-membered 
rings as exemplified by the synthesis of benzo[ 1,2:4,5]dicy- 
c l o b ~ t e n e , ~  but more recently the dramatic success achieved 
in annelating benzene with a three-membered ring6,7 has 
led to a considerable effort in the synthesis of benzocyclo- 
p r ~ p e n e s . ~  We would now like to report a further intensifi- 
cation of the strain on benzene by the synthesis of cyclopro- 
pa[4,5]benzocyclobutene (8),I the first compound known in 
which benzene is annelated by both a three- and a four- 
membered ring. 

Dichlorocarbene addition to the diester 1 was effected by 
the phase transfer method8 using triethylbenzylammonium 
chloride and gave 2 in 85% yield.9-'' Reduction of 2 with 
LiAlH4 in Et20 for 8 hr gave the diol 3, mp 75-79O, 
66%.9310 Treatment of 3 with methanesulfonyl chloride, 
NEt3 at O0l2 for 30 min, gave the dimesylate 4, mp 99- 
looo, 80-85%.9310 Reaction of the diol 3 with thionyl chlo- 
ride in boiling pyridine for 20 min gave the tetrachloride 5, 
mp 74-75O, 20%.9310 When either the dimesylate 4 or the 
tetrachloride 5 was treated with 3 equiv of KOt-Bu in T H F  
at room temperature the diene 6, bp 50-60°, 0.02 mm, was 
obtained in 65% yield.9 The 'H  NMR spectrum showed two 
bands at T 4.80 and 5.20 due to the exocyclic methylene 
protons, and the electronic spectrum showed an absorption 
at 243 nm ( t  7000).13 Photoirradiation of 6 in pentane with 
an Hanovia 250-W medium pressure lamp through quartz 
under argon for 8 hr gave the cyclobutene 7, bp 40-46O, 
0.01 mm, in 50% ~ i e l d . ~ . ' ~  The IH NMR spectrum showed 

Table I. I3C NMR Shifts in 8, Benzocyclobutene, 
and BenzocyclopropeneQ 

C-1,2 C-3,6 C4,5  C-7,8 C-9 Ref 

128.8 114.7 125.4 
/ >  

,'b; 145.2 122.1 125.8 29.5 
y2 

18.4 21 

21 

~ ~~ 

a The numbering of benzocyclopropene has been chosen for ease 
of comparison with 8. 

a singlet (7 7.62) superimposed on a multiplet r 7.4-8.0, 
and a multiplet at r 8.25 in the ratio 4:1, and the I3C NMR 
spectrum showed bands at 19.4, 25.1, 30.3, 66.3, and 137.4 
ppm.Is Treatment of 7 (100 mg, 0.5 mmol) with KOt-Bu 
(225 mg, 2.0 mmol) in DMSO (1 m1)I6 gave cyclopropa- 
[4,5]benzocyclobutene (8) in 30-40% yield." The mass 
spectrum (20 eV) had m/e 116 (M+, loo%), 115 (M - 1, 
95%); high resolution (70 e v )  116.0609 (C9Hg requires 
116.0625). The 'H NMR spectrum showed only two sin- 
glets at 7 3.15 (2 H) and 6.92 (6 H),18 and the I3C spec- 
trum had five absorptions (see Table I) .  

The electronic spectrum (cyclohexane) showed a broad 
band with maxima at 284 nm ( e  ca. log 3.0) 287.5 ( t  ca. log 
3.0) and 294 (t  ca. log 2.8).'9,20 

C02Et 

CI C0,Et 
1 2 

1 
CH&I CHPOR cla c cla 

CI CH,CI c1 CH,OR 
5 , 3 , R = H  

1 
ICH, Jm - a 
1 

9 8 

The above data are clearly in accord with the assigned 
structure. A comparison of the I3C spectrum with those of 
benzocyclopropene2' and benzocyclobutene2l is made in 
Table I .  The chemical shifts observed for 8 are very close to 
those observed in these compounds, except that carbons-3,6 
in 8 are at higher field than the corresponding carbon atoms 
in benzocyclopropene and benzocyclobutene.22 This upfield 
shift is presumably due to the increase of strain in 8. 

Treatment of 8 with iodine at room temperature caused 
cleavage of the cyclopropene ring to give 9, mp 138- 
1390.7.9.10 

Communications to  the Editor 


