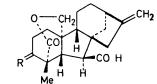
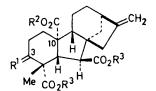
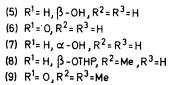
J.C.S. Снем. Сомм., 1972

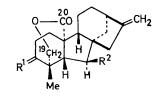

Partial Synthesis of Gibberellin A₃₇ by Selective Reduction of the Hindered 10-Carboxy-group in Gibberellin A₁₃

By D. H. BOWEN, D. M. HARRISON, and J. MACMILLAN* (School of Chemistry, The University, Bristol BS8 1TS)

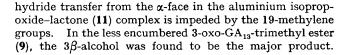

Summary Selective reduction of the severely hindered 10-carboxy-group in gibberellin A_{13} (5) has been achieved through its $20 \rightarrow 3$ -lactonic derivative (10) in which the relevant carbonyl function is made more accessible; a partial synthesis of the new gibberellin A_{37} (2) is thus provided.


The need for a partial synthesis of derivatives of gibberellin A_{15} (GA₁₅) (1) from the relatively accessible GA_{13} (5) has been cogently argued by Cross and Stewart.¹ A further stimulus has been provided recently² by the isolation of the new gibberellin, GA_{37} (2), as its β -D-glucosyl ester, from mature seed of *Phaseolus vulgaris*. The challenging step in the conversion of GA_{13} (5) into GA_{15} (1) and GA_{37} (2) is the selective reduction of the highly hindered 10-carboxy-group in GA_{13} (5). This selective reduction has now been effected via the 20 \rightarrow 3-lactone (10) in which the lactonic carbonyl function is held in an accessible orientation (see 10a). The following partial synthesis of GA_{37} (2) has thus been developed.

The $20 \rightarrow 3$ -lactone (10) was prepared by reduction $(NaBH_4)$ of 3-oxo-GA₁₃ (6), followed by pyrolysis at 135° of the resultant mixture of the $20 \rightarrow 3$ -lactone (10) and the hydroxy-acid (7). Reduction (LiBH₄) of the $20 \rightarrow 3$ lactone (10) in tetrahydrofuran at 20° directly gave the $19 \rightarrow 20$ -lactone (3), oxidised by Jones' reagent to the ketone (4). Reduction $[Al(OPr^{i})_{3}$ in $Pr^{i}OH]$ of the latter compound gave a 1:1 mixture of the 3β -(2) and 3α -(3) epimers which were separated by t.l.c. on silica gel with EtOAc-light petroleum-AcOH (50:50:1). The faster moving 3β -isomer (2) was identical (m.p., g.l.c., and spectroscopic properties) with GA_{37} (2), prepared by reduction of GA_{36} ;³ the methyl esters were also identical. In the Meerwein-Ponndorf reduction of the isomeric $3-0x0-20 \rightarrow$ 19-lactone (11) Cross and Stewart¹ obtained mainly the 3α -epimer (12) and only traces of the 3β -epimer (13) (in our hands 15-20% by g.l.c.). Molecular models indicate that


(1)
$$R = H_2$$

(2) $R = H, \beta - OH$
(3) $R = H, \alpha - OH$
(4) $R = O$



(10a)

(11) $R^1 = O, R^2 = CO_2H$ (12) $R^1 = H, \alpha - OH, R^2 = CO_2H$ (13) $R^1 = H, \beta - OH, R^2 = CO_2H$

Thus reduction with aluminium isopropoxide of 3-oxogibberellins may only exceptionally yield the unnatural 3α -hydroxy-epimers.

We thank the S.R.C. for financial support.

(Received, 12th May 1972; Com. 810.)

- ¹ B. E. Cross and J. C. Stewart, J. Chem. Soc. (C), 1971, 245.
 ² K. Hiraga, T. Yokota, N. Murofushi, and N. Takahashi, Agric. Biol. Chem. (Japan), 1972, 36, 345.
 ³ J. R. Bearder and J. MacMillan, Agric. Biol. Chem. (Japan), 1972, 36, 342.

809