Highly Enantioselective Synthesis of β-Hydroxy Nitriles by the Cyanomethylation of Aldehydes using DPMPM as a Chiral Catalyst or Ligand

Kenso Soai, * Yuji Hirose, and Shuichi Sakata
Department of Applied Chemistry, Faculty of Science,
Science University of Tokyo, Shinjuku, Tokyo, 162 Japan

(Received 19 March 1992)

Abstract: Optically active β -hydroxy nitriles in up to 93% e.e. were obtained by the enantioselective addition of cyanomethylzinc bromide to aldehydes using DPMPM as a chiral catalyst or ligand.

Optically active β -hydroxy nitriles (3) are important compounds because cyano group can be converted into amino or carbonyl compounds. However, there have been only a few reports on the preparation of optically active 3 by chemical and biochemical methods. We previously reported the first enantioselective addition of cyanomethyllithium to benzaldehyde using an aminoalcohol as chiral ligand. However, a stoichiometric amount of the chiral ligand was required and the e.e. of the obtained β -hydroxy nitrile was moderate (40% e.e.).

678 K. SOAI et al.

Although the enantioselective addition of simple dialkylzincs to aldehydes using chiral catalysts are reported. 4 enantioselective addition of organozinc reagents with functional groups other than alkyls is a challenging problem. 5

We report here a highly enantioselective cyanomethylation of aldehydes (1) with cyanomethylzinc bromide $(2)^6$ using diphenyl(1-methyl-2-pyrrolidinyl)methanol (DPMPM)(4) 7 as a chiral catalyst or ligand.

When benzaldehyde (1a) was reacted with cyanomethylzinc bromide (2) in the presence of 1 mol equiv. of (\underline{S}) -(+)-4 in THF at -13 0 C, (\underline{S}) -(-)-3-hydroxy-3-phenylpropiononitrile (3a) with 93% e.e. was obtained in 76% yield (Table, entry 1). E.e. was determined by HPLC analysis using a chiral column. The result shows that the reagent 2 attacked from the \underline{Si} face of the aldehyde (1). This stereochemical course is the same with that of dialkylzincs. On the other hand, in the presence of (\underline{R}) -(-)-4, (\underline{R}) -(-)-3a with 93% e.e. was obtained (entry 2). Other aryl aldehydes (1b and 1c) were also cyanomethylated in 87-88% e.e.'s (entries 5 and 6). The reaction with 3-phenylpropionaldehyde (1d) (phenyl substituted aliphatic aldehyde) afforded (\underline{R}) -(+)-3d with 74% e.e. (entry 7). The reaction with cinnamaldehyde (1e) $(\alpha,\beta$ -unsaturated aldehyde) afforded (\underline{S}) -(-)-(3) (1,2-addition product) with 78% e.e. (entry 8).

Increasing interest has been centered on catalytic asymmetric synthesis. ⁸ Because cyanomethylzinc bromide adds to aldehydes without catalyst, ⁶ it was a question whether a catalytic amount of DPMPM (4) affords optically active 3. It was found that even the catalytic amount (0.3 mol equiv.) of (\underline{S}) -(+)-4 afforded optically active (\underline{S}) -(-)-3a with 78% e.e. (entry 3). Thus, the role of 4 is not only a chiral ligand but a chiral catalyst.

A typical procedure is as follows: (i) Preparation of cyanomethylzinc bromide (2) 6 : A THF solution (2 ml) of bromoacetonitrile (0.480g, 4 mmol) was added to a Zn-Cu couple (Zn content 91%), and the mixture was stirred for 1 h at room temperature. (ii) Enantioselective cyanomethylation: A THF solution (1 ml) of (§)-(+)-4 was added to 2 and the mixture was stirred for 1 h. The mixture was cooled to -13 °C in ethylene glycol bath and benzaldehyde (1a) (0.106g, 1 mmol) was added. The reaction mixture was stirred at -13 °C for 16 h, and was quenched with 1 M HCl. The mixture was extracted with ethyl acetate, and the extract was dried over anhydrous Na₂SO₄, and the solvent was evaporated under a reduced pressure. The residue was purified by silica gel TLC [developing solvent: hexane-AcOEt 2:1 ($\underline{v}/\underline{v}$) then di-

Table. Enantioselective Synthesis of β -Hydroxy Nitriles (3) by the Cyanomethylation of Aldehydes (1) using DPMPM (4) as a Chiral Catalyst or Ligand.

Entry ^a	RCHO(1)	(4)(Molar ratio 4			3		
			4/1) Time	(h) Y	ield(%)	E.e.(%)b	Config.
1	1a	(<u>S</u>)-(+) (1.0)	16	7	6	93	<u>s</u>
2	1 a	$(\underline{R}) - (-) (1.0)$	16	7	7	93	<u>R</u>
3 ^C	1a	$(\underline{S}) - (+) (0.3)$	17	4	5	78	<u>s</u>
$_{4}^{\mathrm{d}}$	1a	$(\underline{S}) - (+) (0.3)$	16	6	1	75	<u>s</u>
5	1 b	$(\underline{S}) - (+) (1.0)$	17	7	0	88	
6	1c	$(\underline{S}) - (+) (1.0)$	15	8	2	87	
7	1 d	$(\underline{S}) - (+) (1.0)$	16	5	8	74	<u>R</u>
8	1e	$(\underline{S}) - (+) (1.0)$	16	5	9	78	<u>s</u>

a Unless otherwise noted, molar ratio 2/1 = 4.0.

chloromethane]. (\underline{S}) -(-)-3a was obtained in 76%.

As described above, highly enantioselective cyanomethylation of aldehydes was achieved using 4 as a chiral catalyst or ligand. Optically active β -hydroxy nitriles (3) are obtained in high e.e.'s. Either enantiomer of 3 of the desired configuration can be synthesized using the appropriate enantiomer of chiral 4.9

References

- G. Tennant, Comprehensive Organic Chemistry, D. H. R. Barton, D. Ollis, Eds.; Pergamon Press: 1979; Vol. 2, p. 385.
- 2. K. Soai and T. Mukaiyama, Bull. Chem. Soc. Jpn., 1979, 52, 3371.
- 3. T. Itoh, Y. Takagi, and S. Nishiyama, J. Org. Chem., 1991, 56, 1521; T. Itoh, T. Fukuda, and T. Fujisawa, Bull. Chem. Soc. Jpn., 1989, 62, 3851.
- 4. Reviews: R. Noyori and M. Kitamura, Angew. Chem. Int. Ed. Engl.,

b Determined by HPLC analyses using a chiral column (Chiralcel OF).

C Molar ratio $2/1 \approx 2.4$.

d Molar ratio $2/1 \approx 3.0$.

680 K. Soai et al.

- 1991, 30, 49; K. Soai and S. Niwa, Chem. Rev., in press.
- 5. Alkynylzinc: S. Niwa and K. Soai, J. Chem. Soc., Perkin Trans. 1, 1990, 937; G. M. R. Tombo, E. Didier, and B. Loubinoux, Synlett. 1990, 547. Vinyl- and alkenyl-zinc: W. Oppolzer and R. N. Radinov, Tetrahedron Lett., 1988, 29, 5645; idem., ibid., 1991, 32, 5777. Furylzinc: K. Soai and Y. Kawase, J. Chem. Soc., Perkin Trans. 1, 1990, 3214. Phenylzinc: K. Soai, Y. Kawase, and A. Oshio, ibid., 1991, 1613; J. Hübscher and R. Barner, Helv. Chim. Acta, 1990, 73, 1068. Reformatsky reagent: K. Soai and Y. Kawase, Tetrahedron: Asymmetry, 1991, 2, 781; M. Guette, J. Capillon, and J.-P. Guette, Tetrahedron, 1973, 29, 3659.
- 6. N. Goasdoue and M. Gaudemar, C. R. Acad. Sc. Paris, Serie C, 1969, 269, 861.
- K. Soai, A. Ookawa, K. Ogawa, and T. Kaba, J. Chem. Soc., Chem. Commun., 1987, 467; K. Soai, A. Ookawa, T. Kaba, and K. Ogawa, J. Am. Chem. Soc., 1987, 109, 7111.
- 8. B. Bosnich, 'Asymmetric Catalysis,' Martinus Nijhoff, Dordrecht, 1986; 'Asymmetric Synthesis,' Ed. J. D. Morrison, Academic, Orlando, 1985, vol. 5.
- 9. Compound (4) is commercially available in either enantiomeric form from Tokyo Kasei Inc.