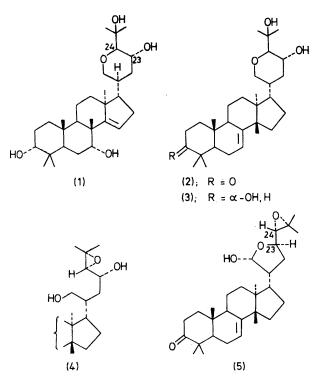
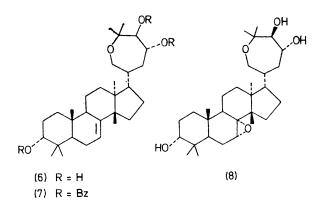
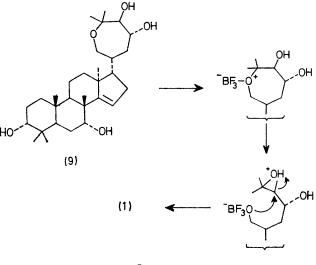
Stereochemistry of Sapelin B; Correlation with Sapelin D. Anomalies in the Use of Shift Reagents for Determining the Absolute Configurations of α -Glycols


By CARLYLE W. LYONS and DAVID R. TAYLOR*


(Chemistry Department, University of the West Indies, Kingston 7, Jamaica)

Summary The c.d. spectrum of sapelin B tribenzoate (7) and correlation with sapelin D (1) have shown sapelin B (6) to be 23R,24S, in agreement with their origin from a common biogenetic precursor; the c.d. spectra of sapelin B and methyl 4,6-O-ethylidene- α -D-glucopyranoside in the presence of Pr(dpm)₃ exhibit Cotton effects of opposite signs to those predicted.


The side chain of sapelin D $(1)^1$ was first encountered in bourjotinolone A $(2)^2$ and was assumed² to arise from the epoxydiol system (4). The same epoxydiol (4) could also give melianone (5)³ and we have recently shown⁴ that the stereochemistry of melianone (5) at C-23 and C-24 is, contrary to the initial assignments,³ the same as in (4). The novel dihydroxyoxepan side chain in sapelin B (6)⁵ is also derivable from the epoxydiol (4) and it is of interest to confirm the C-23 and C-24 stereochemistry assumed⁵ for sapelin B (6) on these biogenetic grounds.

We have already shown⁵ that the 23,24-glycol of sapelin B (6) is *trans*. Measurement of the c.d. spectrum of sapelin B (6) in the presence of $Eu(dpm)_3$ [or $Pr(dpm)_3$]⁶ would appear to be the most direct method of obtaining the absolute stereochemistry at C-23 and C-24. In the event, the c.d. spectrum of sapelin B (6) in the presence of either

Eu(dpm)₃ or $Pr(dpm)_3^{\dagger}$ gave a positive value for the longer wavelength (at 317 and 319 nm, respectively) Cotton effect.⁶ This is contrary to what is expected for (6). However, the c.d. spectrum of sapelin B tribenzoate (7) (non-crystalline)[‡] showed a negative Cotton effect ($\Delta \epsilon = -18$ at 238 nm)[†] as expected for (6).⁷

Scheme

The contradictory results obtained by the two chiroptical methods necessitated obtaining alternative evidence for the stereochemistry of sapelin B (6) and this was obtained as follows. Sapelin B (6) was converted into its $7\alpha,8\alpha$ -epoxide (8), m.p. 220-225 °C, using buffered *m*-chloroperbenzoic acid.⁸ Rearrangement of the epoxide (8) with BF₃¹ gave a mixture of apo-sapelin B (9), m.p. 215-219 °C, and sapelin D (1), identical with authentic material.¹ Sapelin D (1) has been correlated¹ with sapelin A (3)⁵ by

† Measured at the University of Alberta.

‡ Satisfactory spectral data were obtained for all new compounds.

reactions not involving the side chain. In our reported⁵ correlation of sapelin A (3) with bourjotinolone A (2), the chirality at C-23 and C-24 was lost. We now report that, as expected, oxidation of sapelin A (3) with a limited amount of Jones' reagent gave a good yield of bourjotinolone A (2). Since the complete stereochemistry of bourjotinolone A (2) is known,² the above correlations define the stereochemistry of sapelin B (6) at C-23 and, since the α -glycol is *trans*, at C-24. The ring contraction is believed to proceed as outlined in the Scheme.

The chemical data show that the c.d. spectrum of sapelin B tribenzoate (7) leads to the correct chirality of the α -glycol whereas the use of shift reagents gives the wrong result. Another example of the failure of c.d. of an α -glycol complexed to a shift reagent to yield the correct chirality is provided by methyl 4,6-O-ethylidene-a-D-glucopyranoside whose c.d. spectrum in the presence of Pr(dpm)₃

gave a negative Cotton effect for the 314 nm (longer wavelength) band despite the positive chirality of the 2,3-glycol.

The dihydroxyoxepan side chain of sapelin B (6) also occurs in sapelin E,1 which has been correlated with sapelin B (6), and in melianin B.⁹ These and previous results⁴ show that the four modifications of the highly oxidised tirucallol side chain represented by bourjotinolone A (2), melianone (5), sapelin B (6), and sapelin F,⁴ which contains an acyclic tetrahydroxy side chain, are all derivable from the same precursor (4), and that the measurement of the c.d. of α -glycols in the presence of shift reagents is not always a reliable method for assigning their chirality.

We thank Professor G. Snatzke for obtaining the c.d. data of sapelin B in the presence of Eu(dpm)₃ and Professor R. U. Lemieux for a sample of methyl 4,6-O-ethylidene- α -D-glucopyranoside.

(Received, 14th May 1976; Com. 544.)

- ¹ W. R. Chan, D. R. Taylor, and T. H. Yee, J. Chem. Soc. (C), 1971, 2662.
 ² G. J. W. Breen, E. Ritchie, W. T. L. Sidwell, and W. C. Taylor, Austral. J. Chem., 1966, 19, 455.
 ³ D. Lavie, M. K. Jain, and I. Kirson, J. Chem. Soc. (C), 1967, 1347.
 ⁴ C. W. Lyons and D. R. Taylor, J.C.S. Chem. Comm., 1975, 517.
 ⁵ W. R. Chan, D. R. Taylor, and T. Yee, J. Chem. Soc. (C), 1970, 311.
 ⁶ J. Dillon and K. Nakanishi, J. Amer. Chem. Soc. (1975, 97, 5417.
 ⁷ N. Harada and K. Nakanishi, J. Amer. Chem. Soc. (1969, 91, 3889.

 ⁷ N. Harada and K. Nakanishi, J. Amer. Chem. 500, 1010, 91, 3889.
 ⁸ W. K. Anderson and T. Veysoglu, J. Org. Chem., 1973, 38, 2267.
 ⁹ J. I. Okogun, C. O. Fakunle, D. E. U. Ekong, and J. D. Connolly, J.C.S. Perkin I, 1975, 1352; C. W. Lyons and D. R. Taylor, unpublished results.