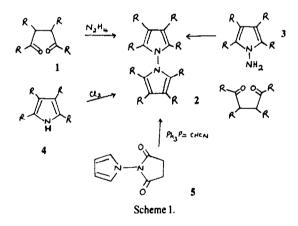
N-OXIDES AND RELATED COMPOUNDS-LI¹

THE SYNTHESIS OF N,N'-LINKED BI(HETEROARYLS)

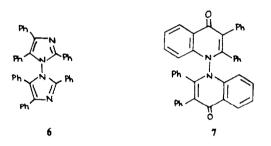
A. R. KATRITZKY* and J. W. SUWINSKI²


School of Chemical Sciences, University of East Anglia, Norwich NR47TJ, England

(Received in UK 23 December 1974; Accepted for publication 24 January 1975)

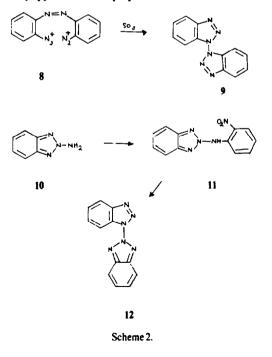
Abstract—Known N,N'-linked biheteroaryls are surveyed. New general synthetic methods are developed and applied for neutral species, for monocations and for dications.

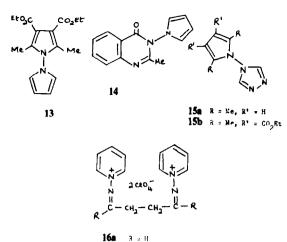
The present study represents the first systematic investigation of synthetic methods for N,N'-linked bi(heteroaryls). Such compounds may be divided into three classes: (i) neutral species, in which an N-N bond links two pyrrole-like nitrogen atoms; (ii) monocations, in which N-N links a pyrrole-like with a pyridine-like N atom; and (iii) dications, in which N-N links two pyridine-like N atoms.


Previous scattered work is mainly concerned with neutral species of type (i), particularly 1,1'-bipyrroyls (2) (Scheme 1), which have been synthesised by the reaction

of 1,4-diketones (1) with hydrazine,^{3,4} or with 1aminopyrroles,^{5,6} and by the oxidation of pyrroles (4)⁷ (a similar reaction is thought to give⁸ 9,9'-bicarbazolyls as intermediates), or by Wittig reaction from 5.⁹ The 1,1'-bi(imidazolyl) (6) has been obtained by oxidation of 2,4,5-triphenylimidazole,⁷ and the 1,1'-bi(quinolonyl) (7) by treatment of the corresponding 1-aminoquinolin-4-one with Pb(OAc)₄.¹⁰ Finally, 1,1'- (9) and 1,2'-bis (benzotriazolyl) (12) have been obtained¹¹ by the routes shown (Scheme 2); the former was quaternised to a monocation.

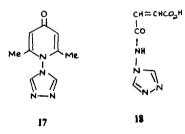
N,N'-Linked biheteroaryls have considerable potential synthetic utility; we have therefore now developed general procedures for their preparation.

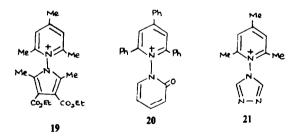

Condensation of N-aminoheteroaryls with 2,5diethoxytetrahydrofuran. We find that neutral N-aminoheterocycles condense in good yields with 2,5diethoxytetrahydrofurans to give 1-(N-heteroaryl) pyrroles. This reaction succeeds in the following series: 1-aminopyrrole, 9-aminocarbazole, 1-amino-2-pyridone,

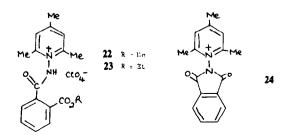


3-amino-4-quinazolone, and 4-amino-1,2,4-triazole. Details are recorded in Table 1 and some of the products illustrated in formulae 13-15. Compounds were characterised by their NMR spectra (Table 1).

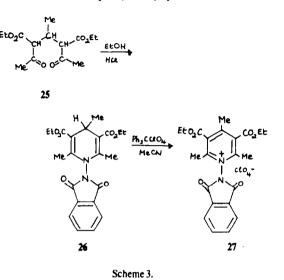
Reaction of 1-aminopyridinium perchlorate with 2,5diethoxytetrahydrofuran gave only the bis-perchlorate (16a), as shown by NMR and analysis; attempts to cyclise 16 failed. Presumably the reduced nucleophilicity of the N-NH₂ group in the cations precludes the ring-closures.

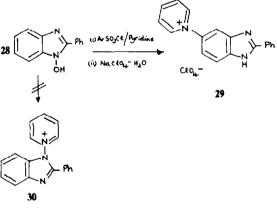

Condensation of 4-amino-1,2,4-triazole with 1,4diketones and with a 4-pyrone. Two further N,N'-linked triazolyl-pyrroles were prepared from reactions of 4-




amino-1,2,4-triazole with diketones: the yield (of 15a) was

poor from hexane-2,5-dione, but that of 15b good from the 3,4-diethoxycarbonyl analogue. The 4-aminotriazole reacted with 2,6-dimethyl-4-pyrone to give the triazolylpyridone (17) in poor yield. Reaction of 4-aminotriazole with maleic anhydride gave the acylated product 18.


Condensation of N-aminoheteroaryls with pyrylium cations. N,N'-linked 1-heteroarylpyridinium cations are formed by reaction of N-aminoheteroaryls with 2,4,6-trimethyl- (Table 2) and 2,4,6-triphenyl-pyrylium cations (Table 3). The yields are generally good and the reaction succeeds in the 1-aminopyrrole (cf. 19), 9-aminocarbazole, 1-aminopyridone (cf. 20), 3-amino-4-quinazolone, 4-aminotriazole (cf. 21) and 1-aminobenzimidazole series.



Condensation of N-aminophthalimide with 2,4,6trimethylpyrylium cation gave 22 or 23 if the reaction were run in methanol or ethanol, respectively, but the ring-closed product 24 in AcOH. Attempted recrystallisation of 24 from hot ethanol gave 23.

Preparation of an 1-aminopyridinium compound via a dihydropyridine. N-Aminophthalimide yields the dihydropyridine 26 by reaction with keto-ester (25). Hydride ion loss to the N-aminopyridinium derivative 27 was effected with triphenylmethyl perchlorate.

Attempted nucleophilic displacement at nitrogen. Attempts to prepare 30 by the reaction $28 \rightarrow 30$ gave instead 29; nucleophilic attack occurred on carbon instead of nitrogen. This reaction took a similar course with both benzene and mesitylene-sulphonyl chlorides. The product 29 was identified by the IR and NMR spectra. 2,4,5-Triphenylimidazole 1-oxide did not undergo such a reaction.

Scheme 4.

Reactions with N-aminopyridinium perchlorate. Hexane-2,5-dione with N-aminopyridinium perchlorate gave the 1-(1'-pyrrolyl) pyridinium cation 31 together with some of the bisperchlorate (16b). Attempts to react Naminopyridinium perchlorate with 1,4-diphenylbutan-1,4dione failed as the diketone underwent preferential self-condensation.

Many attempts were made to react 1-aminopyridinium

						Table 1. 4-(N-heteroaryl)pyrroles	V-heteroary	vl)pyrroles				ļ		
Starting N-amino compound	M. D.	Crystal	Solvent for	Yield		Found %		Formula		Calc. %			Chemtcal shift	al shift
	с J	C Form	recryst.	8 ⁹²	c	H	z		U	×	z	Pyrrole	Pyrrole protons	1-Substituent protons
l - Amíno-3, 4-díethoxycarbonyl- 2, 5-dímethylpyrrole	58-60	5 86 0 prisms	EtOH- H ₂ O	13	62, 6	9.9	8.9	C ₁₆ H ₂₀ N ₂ O ₄	63.1	6.6	9.2	3.15	3.5	5.2 (q. 4. $\underline{J} = 7Hz$) 7.6 (a. 6) 8.6 (t. 6, $\underline{J} = 7Hz$) 8.6 (t. 6, $\underline{J} = 7Hz$)
9-A mino-carbazole	9092	90—92 needlea	EtOH - H ₂ O	60	81.9	5.4	11.8	$c_{16}H_{12}N_{2}$	82.7	5, 2	12, 1			
1-Amino-pyr id-2-one	172174	17 2—1 74 needles	EtOH	81	67.2	5,3	16.7	с ₉ н ₈ и ₂ о	67.5	5.0	17.5	3.1	3.6	1.5-2.9 (m, 4)
l - A mino-4-methyl- quinol-2-one	157—158 micro crystals	micro crystals	clic1 ₃	67	74.7	5.3	12.4	C14 ^H 12 ^{N2} O	75.0	5.4	12.5	3.1	3.5	2.8 (s. 1) 1.7-3.6 (m. 4) 7.2 (s. 3)
3-Amino-2-methyl- quínazol-4-one	114—116 micro crystai	micro crystals	EtOH	06	69, 6	5.0	18.5	C ₁₃ H ₁₁ N ₃ O	69. 3	4,9	18,6	3.0	4°. 1	1.4-2.1 (m, 4) 7.2 (s, 3)
4-Amino-1, 2,4-triazole	135136	135-136 needlcs	еюн - н ₂ о	30	53.6	4.7	41.1	C ₆ H ₆ N ₄	53.7	4.5	41.8	2.9	3.5	0.6 (8, 2)

N-oxides and related compounds-LI

Parent N-amino compound	Method	мр. ⁹ С	Method M.p. ^o C Crystal form	Solvent for recryst.	Yield %	Û	Found %	×	Formula	J	Calc. % H	z	Pyru	Cher Pyridinium protons	Chenucal shift tons	thift Protons of 1-
				,			:	:					2, 6 di Me	2,6 di Ne 3,5 di H 4 - Me	I 4-Me	substituent
l - A mıno-2, 5-dı- methylpyrrole	<	<u>ca</u> 170 ²	ı		low	,	,		c14 ¹¹ 2 ^{c1N2} 04	53.4	6.1	6.8	7.5	2.2	7.3	3.8 (8, 2) 8 0 (8, 6)
1 - A mino-3, 4 - di- ethoxycarbony] - 2, 5 - dimethylpyrrole	۲,	139—140	139—140 needles	11,20	67	52 1	ຕ ້ ທ	6 2	с ₂₀ н ₂₇ с1х ₂ 0 ₈	52 3	6 S	6.1	75	2.0	7 2	$\begin{array}{c} 5.3 & (q, 4, \underline{J} = 7Hz) \\ 7.6 & (B, 6) \\ 8.4 & (t, 6, \underline{J} = 7Hz) \end{array}$
9-Aminocarbazole	<	169—170 ⁴	169	Me2CO-Et2O	00	61 1	5 1	7 1	²⁰ H ₁₉ CIN ₂ 0	62. 1	4.9	7.2	1.6	2 0	7.2	1.6-3.8 (m. 8)
l - Amıno-pyrid-2 - one	< 8	129130 12 612 7	prisms	Me2CO	65 86	494	4.9	8 5	с ₁₃ н ₁₅ сти ₂ 05	49.6	8. 8	6 8	7.4	2.1	7 3	1 8-3.1 (m. 4)
1 - A m Ino-quinol - 2 - one	n	204206	204—206 ² plates	EtOH	62	55.9	4 7	75	с ₁₇ н ₁₇ сім ₂ 0 ₅	56. 0	4 7	7.7	7.5	2.0	7, 1	1.5-3.5 (m, 6)
4 - Amino-1, 2, 4 - triazole	¥ 8	200201 ^a 204 ^a	a needles	EtOH	06 06	41.3	4 7	19.1	с ₁₀ н ₁₃ сих ₄ о4	41.6	4. N	19.4	7.4	2.1	7.2	0.4 (a, 2)
1 - A mino-benz imidaz ole	£	1 90—1 91 [±]	190—191 ^ª needles	FIOH	86	52.8	4.9	12 4	د ¹⁵ ال ¹⁶ دا×30	53, 3	4.8	12 4	7.4	2.0	7. 1	1.5-2.4 (m. 5)
3-Amino-2-methyl- quinazol-4-one	B	174176 ⁶	174—17 <mark>5ª</mark> prismatic MeOII needles	MeOH	60	53 9	4.7	10.7	c1118c1N305	53.8	4.8	111	7.2	1 9	7. 0	1.3-2.0 (m. 4) 7.1 (s. 3)

Table 2. 1-(N'-heteroaryl)-2,4,6-trimethyl-pyridinium perchlorates

With decomposition.

Parent N-amino			Crystal	Solvent			Found 7.				Calc 7.		Chemical shift	-
compound	Method	Method M. p. ^O C	form	for recryst.	Yield %	υ	=	z	Formula	U	=	z	Pyradinium 3, 5-di H	(ther protons
1 - A mino- pyrid-	:	q			c t	•					-	u u	6 0 1 7 <i>1</i> 0 1	1 9-3 7 (m 19)
2-one	ас	236-8-	plates	Etoli	78	66. 4	4	5 4	C2RH21CIN2O5	1 10	4 2	e ĉ	1 2 (2) 1 1	1. • (11) • 'C_L: 4
4-Amino-1, 2, 4-		a,			ŭ	ç				c 53	c •	a [10 2) 1 8 11	0.7 (s.2)
tríazole	¢	-0-817	prisms	HONE	60	F. 70	4. 4		25 ¹¹ 1.0 ⁴ 114 ⁴ 4	7 .00				1.7-2.5 (m, 15)
4-Amino-1, 2, 4-		q		:	ŝ			-			-	5 7 7	1,6 (d,1 <u>J</u> = 111z)	0 5 (8,2) 1 8-7 5 (m 10)
triazol e^a	۲	-9-96 T	prising	Me2CU	ŝ	4 4	¢	13.2	20"17" IN 4"4	2.86	.	u '01	1. 7 (d, 1 \overline{J} = 1Hz)	7.2 (8,3)
3-Amino-2-methyl	£	dere ore	micro	ikyea.	03	1 13		9		67 Q	r 7	74 14	1 4	1.5-2.5 (m. 19)
quinazol-4-one	٥	-717-017	crystals	14 Minut	6	•	r		32''24' '''3' 5		;			7.0(8.3)

Table 3. 1-(N'-heteroaryl)-2,4,-6-triphenyl-pyridinium perchlorates

Condensation with 2-methyl-4, 6-dtphenyl pyrylium perchlorate to give 2-methyl-4. 6-diphenyl

1-(1', 2', 4'-triazol'-4'-yl)-pyridinium perchlorate.

<u>b</u> With decomposition.

Parent compound		Solvent		Crystal	Solvent		Found 🖷				Calc. 🖫		Chemical shift	shift
	Method	for reaction	M P. ^C	form	for recryst	U	Ħ	×.	Formula	U	н	z	Introd. Me	Other signals
1-(1', 2', 4'-Triazol-4'-y'))- pyrrole	× ×	сн ₂ с1 ₂ 110-112	110-112	necdles	н ₂ 0	34 0	0 7	21 8	с ⁻ н ⁹ стх ⁴ с ⁴	33 B	9 . Q	22 5	5.6 (s.3)	0 4 (s.1); 1 1 (s.1) 2 8 (t.2, <u>1</u> - 1 511z) 3 5 (t.2, <u>1</u> - 1 511z)
3, 4-Diethoxycarbony]-2, 5- dimethyl-1-(1, 2', 4'-triazol- 4'-yl)-pyrrole	۲	CH ₃ NO ₂ 128-130	128-130	needles	н₂с	42.3	5.2	13 2	C ₁₅ H ₂₁ C1N4O8	42 8	5.0	13 3	5.6 (s. 3)	-03 (s.1):08 (s.1) 52 (q.4, <u>1</u> = 7H≠): 7.5 (a.6) 8.5 (t.6, <u>1</u> = 7Hz)
2, 4, 6-T rimethyl-1-(1', 2', 4'- triazol-4'-yl)-pyridinum perchlorate	×.	ı.	172 ⁴	plates	MeOH	32.6	4 3	13 7	13 7 C ₁₁ ¹¹ 1, f ¹ 2 ^{N4} C ₈	32 8	4.0	13. 9	5.5 (s, 3)	-0.6 (s. 1). 0 4 (s. 1) 2.1 (s. 2); 7 2 (s. 3) 7.3 (s. 6)
2-Methyl-4. 6-diphenyl-1-(1', 2', 4'- triazol-4'-yl)-pyridinium perchlorate	A		170-172 ^b	micro crystals	Me ₂ CO- Et ₂ C	46. 5	66	₹	c ₂₁ H ₂₀ C1 ₂ N ₄ O ₈	47.8	e e	10, 6		-0.4 (s, 1); 0.5 (s, 1) 1.5 (d, 1. <u>.</u>] - 41[z]; 1 6 (d, 1. <u>.]</u> - 11]z) 7.0 (s, 3); 1.7-2.4 (m, 10)
2, 4. 6-Triphenyl-1-(1'. 2', 4'-triazol- 4'-yl}-pyridinium perchlorate	4		248-250 ^b	mtero erystals	н ₂ с	52 4	4.1	1.2	C ₂₆ ^H 22 ^{C1} 2 ^N 4 ^O 8	53.0	3.0	9,5	5. 9 (s. 3)	-0.3 (s, 1); 0.7 (s, 1) 1.5 (s, 2); 1.7-2.3 (m, 15)
1 - (P yrr oi-1 '- yl)-pyrıd- 2 - one	B	сн ₂ с1 ₂	136-138	prısma	нон	43.6	4 7	10 0	с ₁₀ ^н 11 ^{сіи} 2 ⁰ 5	43.7	4 . 0	10.2	5.6 (s, 3)	1. $1-2$. 4 (m. 4) 2. 9 (t, 2, $\frac{1}{2} = 1$. 5f(z) 3. 4 (t, 2, $\frac{1}{2} = 1$. 5f(z)
2-Methyl-3-(pyrrol-1'-yl)- quinazol-4-one	E	сн ₂ сı ₂	сн ₂ с1 ₂ 1 ⁹⁶ -198 ^b	plates	MeCN	49.1	4 3	12, 5	C ₁₄ H ₁₄ CIN ₃ O ₅	49 5	4.2	12.4	5.7 (s. 3)	$\begin{array}{c} 1.4 - 2.2 & (m, 4) \\ 3.1 & (1.2, \frac{1}{2} = 1, 5) \\ 3.5 & (1.2, \frac{1}{2} = 1, 5) \\ 7.2 & (3, 3) \end{array}$
2. 6-Dimethy]-1-(1', 2', 4'- triazol-4'-y]-pyrrol-4-one	a D	сн ² сı ²	сн ₂ с1 ₂ 224-226 ^b	needles	NHC N- Et ₂ O	31 0	4 D	13 5	С ₁₁ Н ₁₆ С1 ₂ N ₄ О ₃	31.5	3.8	13 4	5,6 (s, 3) 5 8 (s, 3)	-0 4 (s, 1), 0 6 (s, 1) 2.6 (s, 2) 7.5 (s, 6) 6 evt etandard)

Table 4. Mono- and di-cation species obtained by methylation of parent N.N-linked biheteroaryls

🔒 0. 005 mole was used.

1554

² With decomposition.

cation with pyrylium salts (both 2,4,6-trimethyl and 2,4,6-triphenyl); under acidic or neutral conditions, starting materials were reisolated. Basic conditions (aqueous or anhydrous tertiary amine) gave mixtures of various compounds, but in no case was 1,1'-bipyridinium isolated. Reaction of 1-aminopyridinium with bis(α -chlorobenzal)hydrazine gave 1-benzamidopyridinium involving hydrolysis either before or after reaction.

Quaternary salt formation by N,N'-linked biheteroaryls. Representative neutral N,N'-linked biheteroaryls were converted into monocations, and mono-cationic N,N'-linked biheteroaryls were converted into biscations by methylation with FSO₃Me or MeI/AgClO₄. Details are recorded in Table 4. Attempts to O-methylate 1pyridiniumyl-2-pyridone failed.

EXPERIMENTAL[†]

N-Amino-heteroaryls. 1 - Amino - 2,5 - dimethylpyrrole, 12 1 - amino - 3,4 - diethoxycarbonyl - 2,5 - dimethylpyrrole, 13 9 - amino - carbazole, 14 1 - amino - 2 - pyridone, 15 3 - amino - 2 - methyl - 4- quinazolone, 16 4 - amino - 4H - 1,2,4 - triazole 17 and 1 - amino-pyridinium perchlorate 16 were synthesized by known procedures. 1 - Amino - 2 - quinolone, 15 1 - amino - 4 - methyl - 2 - quinolone 15 and 1 - amino - benzimidazole 19 were donated by J. Lewis of this laboratory.

Pyrylium perchlorates. 2,4,6 - Trimeth.ylpyrylium perchlorate,²⁰ 2 - methyl - 4,6 - diphenylpyrylium perchlorate²¹ and 2,4,6 - triphenylpyrylium perchlorate²² were prepared as described.

General procedure for reaction of N - aminoheteroaryls with 2,5 - diethoxytetrahydrofuran. The N-amino compound (0.01 mole), 2,5 - diethoxytetrahydrofuran (1.6 g, 0.01 mole) and AcOH (25 ml) were heated under reflux for 30 min. Solvent was then evaporated at 60°/20 mm. The residue was treated with water and the insoluble product was filtered off, dissolved in hot EtOH decolourised with charcoal and allowed to cool (Table 1).

Application of this procedure to N-aminopyridinium perchlorate gave exclusively N,N' - bispyridin - 1 - yl - 1,4 diiminobutane biperchlorate (1.6 g, 73%) as needles from EtOH m.p. 172-173° dec. (Found: C, 38.2; H, 3.9; N, 12.5. C_{1.4}H₁₆Cl₂N₄O₈ requires: C, 38.3; H, 3.7; N, 12.8%); PMR (60 MHz, CF₃COOH) τ 1.0-2.0 (12) 6.7 (m, 4).

2,5 - Dimethyl - 1 - (1',2',4' - triazol - 4' - yl) - pyrrole. 4 - Amino - 1,2,4 - triazole (3·4g, 0·04 mole), hexane-2,5-dione (4·6g, 0·04 mole) and MeOH (50 ml) were heated under reflux for 10 hr. Solvent was evaporated over a water bath and the oily residue was treated with 5% HCl (25 ml). Insoluble solid was filtered off and discarded. After the filtrate was set aside overnight, the crystalline precipitate was recrystallized from ethanol as needles (0·4g, 7%) m.p. 140-142°. (Found: C, 59-1; H, 6-1; N, 34·8. C₈H₁₀N₄ requires: C, 59·2; H, 6-2; N, 34·6%); PMR (60 MHz, CF₃COOH) τ 0·6 (s, 2), 4·0 (s, 2), 8·0 (s, 6).

3,4 - Diethoxycarbonyl - 2,5 - dimethyl - 1 - (1',2',4' - triazol - 4' - yl) - pyrrole. 4 - Amino - 1,2,4 - triazole (0.84 g, 0.01 mole), 3,4 - diethoxycarbonylhexane - 2,5 - dione (2.58 g, 0.01 mole) and glacial AcOH (50 ml) were heated under reflux for 2 hr. Solvent was evaporated at 60°/20 mm and the residue was treated with cold water (50 ml). The precipitated product (3.3 g) was collected; it recrystallized from EtOH as needles (2.6 g, 85%), m.p. 134-136°. (Found: C, 54.9; H, 5.9; N, 17.7. C, AH, NAO, requires: C, 54.9; H,

2,6 - Dimethyl - 1 - (1',2',4' - triazol - 4' - yl) - pyrid - 4 - one. 4-Amino - 1,2,4 - triazole (0.84 g, 0.01 mole), 2,6 - dimethyl - 4 pyrone (1-24 g, 0.01 mole), water (5 ml) and K_2CO_3 (0.25 g) were heated under reflux for 12 hr and cooled overnight. The separated *triazolylpyridone* recrystallized from aqueous EtOH as needles (0.3 g, 16%), m.p. 310°. (Found: C, 56-9; H, 5-4; N, 29-5. C₉H₁₀N₄O requires: C, 56-8; H, 5-3; N, 29-5%); PMR (60 MHz, CF₃COOH) τ 0-4 (s, 2), 2-6 (s, 2), 7-5 (s, 6).

General procedure for the reaction of N-aminoheteroaryls with 2,4,6 - trisubstituted pyrylium perchlorates

(A) The N-aminoheteroaryl (0.01 mole) and the pyrylium perchlorate (0.01 mole) were powdered and added to dry benzene (20-25 ml). The resultant suspension was stirred and heated under reflux for 5 hr. The hot mixture was filtered through a sintered glass funnel. The solid was collected, washed with diethyl ether, dried and recrystallized from EtOH, acetone or water (Tables 2 and 3).

(B) The N-aminoheteroaryl (0.0105 mole) and the pyrylium perchlorate (0.01 mole) were heated under reflux in abs EtOH (25-30 ml) for 6-8 hr. Crystals separated from the cooled mixture and were collected. An additional amount of product could be obtained by dilution of the EtOH filtrate with diethyl ether. (Tables 2 and 3).

1 - (2' - Ethoxycarbonylbenzoylamino) - 2,4,6 - trimethylpyridinium perchlorate. Condensation of N-aminophthalimide with 2,4,6 - trimethylpyrylium perchlorate as in procedure (B) gave prisms (3·1 g; 75%) (from EtOH, dec above 162° without melting). (Found: C, 51·9; H, 5·2; N, 6·9. C₁₈H₂₁ClN₃O, requires: C, 52·4; H, 5·1; N, 6·8%); PMR (60 MHz, CF₃COOH) τ 1·7-2·2 (m, 4), 2·3 (s, 2), 5·6 (q, 2, J = 7 Hz), 7·0 (s, 6), 7·3 (s, 3), 8·5 (t, 3, J = 7 Hz). N-Aminophthalimide and 2,4,6 - trimethylpyrylium salt in methanol similarly gave 1 - (2' - methoxycarbonylbenzoylamino) - 2,4,6 - trimethylpyridinium perchlorate (2·5 g, 63%) as prisms (from MeOH) dec above 220°. (Found: C, 51·1; H, 5·0; N, 6·9. C₁₇H₁₉ClN₃O, requires: C, 51·2; H, 4·8; N, 7·0%), PMR (60 MHz, CF₃COOH) τ 1·9-2·5 (m, 6) 6·1 (s, 3), 7·2 (s, 6), 7·5 (s, 3).

N-Aminophthalimide and 2,4,6-trimethylpyrylium perchlorate in hot glacial acetic acid gave 2,4,6 - trimethyl - 1 - (N' phthalimido) - pyridinium perchlorate (1-35 g, 40%) m.p. 162-166° (crude). (Found: C, 50.7; H, 4.3; N, 7.5. C16H15ClN2O6 requires: C, 52.4; H, 4.1; N, 7.6%); PMR (60 MHz, CF3COOH) 7 1.9-2.1 (m, 4), 2-3 (s, 2), 7-4 (s, 3), 7-5 (s, 6). 1 - (2',5' - Dimethylpyrrol - 1' yl)pyridinium perchlorate. N-Aminopyridinium perchlorate (1-94 g, 0-01 mole), hexane - 2,5 - dione (1-14 g, 0-01 mole), ethanol (50 ml) and H₂SO₄ (0.8 ml) were heated under reflux for 10 hr and cooled overnight at 20°. The perchlorate separated; it crystallised from water as long yellow needles (0.5 g, 16%), m.p. 224-226° dec. (Found: C, 48-3; H, 4-8; N, 10-5. C11H13CIN2O4 requires: C, 48-4; H, 4.8; N, 10-3%); PMR (60 MHz, CF3COOH) + 1-0-1-7 (m, 5), 3-9 (s, 2), 7.9 (s, 6). Additional product (0.3 g) can be obtained by slow evaporation of the EtOH filtrate. The reaction mixture contains also a small amount of N,N' - bispyridin - 1 - yl - 2,5 - diimino hexane biperchlorate as white needles from water m.p. 196-198° dec. (Found: C, 40.7; H, 4.4; N, 12.1. $C_{16}H_{20}Cl_2N_4O_8$ requires: C, 41-1; H, 4-3; N, 12-0%); PMR (60 MHz, CF, COOH) 7 1-2.0 (m, 10), 6.6-6.8 (m, 4), 7.7-8.0 (m, 6).

3,5 · Diethoxycarbonyl - 1,4 - dihydro - 2,4,6 · trimethyl - 1 - (N'phthalimido) - pyridine. N-Aminophthalimide (1.62 g) diethyl ethylidenebisacetoacetate (2.86 g), EtOH (5 ml) and 4M-aqueous hydrogen chlorate (6 ml) were kept at 20° for 10 days. The precipitated dihydropyridine (1.7 g) crystallised from EtOH as needles m.p. 149-151°C. (Found: C, 63.8; H, 5.8; N, 6.9. C₂₂H₂₄N₂O₆ requires: C, 64.0; H, 5.8; N, 68%); PMR (CF₃COOH) r 1.7-2.0 (m, 4), 5.6 (q, 4, J = 7 Hz), 7.8 (s, 6), 8.6 (t, 6, J = 7 Hz), 6.1 (q, 1, J = 8 Hz), 8.7 (d, 3, J = 8 Hz).

3,4 - Diethoxycarbonyl - 2,4,6 - trimethyl - 1 - (N' - phthalimido) - pyridinium perchlorate. The dihydropyridine (0.412 g), triphenylmethyl perchlorate (0.342 g, 0.001 mole) and acetonitrile (5 ml) were left for 12 hr. Diethyl ether was added to complete the precipitation: the product crystallised from EtOH as plates, m.p.

[†]M.ps are uncorrected. They were taken on a Gallenkamp apparatus.

148-150°C (Found: C, 51.2; H, 4.9; N, 5.4; $C_{22}H_{23}CIN_2O_{10}$ requires: C, 51.7; H, 4.5; N, 5.5%); PMR (CF₃COOH) τ 1.7-2.0 (m, 4), 5.3 (q, 4, J = 7 Hz), 7.2 (s, 9), 8.5 (t, 6, J = 7 Hz).

2 - Phenyl - 6(pyridinium - 1 - yl) - benzimidazole perchlorate. 1 - Hydroxy - 2 - phenylbenzimidazole (6·3 g), mesitylene sulphonylchloride (8 g) and pyridine (20·0 g) were heated at 100°C for 1 hr. Excess pyridine was removed at 15 mm/100° and a saturated aqueous solution of sodium perchlorate (100 ml) was added. The mixture was heated to 90°C and insolubles were filtered off and discarded. The filtrate on cooling deposited the perchlorate (2·0 g), which after two crystallations from H₂O formed needles (0·5 g), m.p. 208-210°. (Found: C, 57·0; H, 2·0; N, 11·0. C₁₈H₁₄ClN₃O₄ requires: C, 58·2; H, 3·8; N, 11·3%).

General procedures for methylation of N,N-linked bi-heteroaryls

(A) The N.N-linked bi-heteroaryl (0.01 mole) was treated with methyl fluorosulphonate (0.02-0.06 mole) at room temp (in solvent or without) for 3-4 days. The product crystallised and was filtered off and washed with dichloromethane or dry diethyl ether. The crude fluorosulphonates were dissolved in the minimum of hot water and poured into 50% aqueous sodium perchlorate soln. Precipitated perchlorate was collected and recrystallised from water or acetone-diethyl ether (Table 4).

(B) The N,N-linked biheteroaryl (0.01 mole), silver perchlorateacetonitrile complex (3.76 g, 0.01 mole) and 1,2-dichloroethane (20 ml) were stirred at 20°. MeI (7.0 g ~0.05 mole) was added dropwise and stirring was continued for 24 hr. The resultant mixture was filtered through sintered glass; solid on the funnel was washed with hot acetonitrile (20 ml) and the combined filtrate was diluted with dry diethyl ether to precipitate the product, which was recrystallized from ethanol or water (Table 4).

Acknowledgement—We thank the British Council for a Fellowship (to J. S.).

REFERENCES

- ¹For Part L see A. R. Katritzky, S. Q. A. Rizvi, and J. W. Suwinski, submitted to J. C. S. Perkin I.
- ²British Council Fellow on leave from the Department of Organic Chemistry and Technology, Silesian Technical University, 4, Katowicka Str. Gliwice, Poland.
- ³C. Korschun, Ber. Disch. Chem. Ges. 37, 2183 (1904).
- *C. Bülow and C. Sautermeister, Ibid. 37, 2697 (1904).
- ³von W. Flitsch, U. Krämer and H. Zimmermann, *Ibid.* **102**, 3268 (1969).
- ⁶C. Chang and R. Adams, J. An. Chem. Soc. 53, 2353 (1931).
- ⁷H. Zimmermann, H. Baumgärtel and F. Bakke, Angew. Chem. 73, 808 (1961).
- W. H. Perkin, Jr. and S. H. Tucker, J. Chem. Soc. 119, 216 (1921).
- ^{*}W. Flitsch and H. Lerner, *Tetrahedron Letters* 1677 (1974). see also W. Flitsch and B. Müter, *Ber. Dtsch. Chem. Ges.* 2847 (1971).
- ¹⁰C. W. Rees and M. Yelland, J. Chem. Soc. Perkin I 77 (1972).
- ¹¹R. J. Harder, R. A. Carboni and J. E. Castle, J. Am. Chem. Soc. 89, 2643 (1967).
- ¹²R. Epton, Chem. & Ind. 425 (1965).
- ¹³C. Bülow, Ber. Dtsch. Chem. Ges. 35, 4311 (1902).
- ¹⁴H. Wieland and A. Süßer, Liebigs Ann. 392, 169 (1912).
- ¹⁵A. R. Katritzky, J. Lewis, E. Lunt, S. Q. A. Rizvi and G. Roch, Anales de Química, in press.
- ¹⁶G. Heller, E. Göring, J. Kloss and W. Köhler, J. Prakt. Chem. 111, 36 (1925) [Chem. Abs. 20, 206 (1926)].
- ¹⁷C. F. H. Allen and A. Bell, Org. Synth. Coll. vol. III, 96 (1955).
- ¹⁹J. Epsztajn, E. Lunt, and A. R. Katritzky, *Tetrahedron* 26, 1665 (1970).
- ¹⁹M. N. Sheng and A. R. Day, J. Org. Chem. 28, 736 (1963).
- ²⁰A. T. Balaban and C. D. Nenitzescu, Org. Synth. 44, 98 (1964).
- ²¹K. Dimroth, Angew. Chem. 72, 331 (1960).
- ²²A. T. Balaban and C. Toma, Tetrahedron Suppl. 7, 1 (1966).