DERIVATIVES OF PYRIMIDINE.

XLVIII. SYNTHESIS AND BIOLOGICAL PROPERTIES OF SOME

N₁-SUBSTITUTED 5-FLUOROURACILS

R. G. Melik-Ogandzhanyan, R. G. Mirzoyan,

V. É. Khachatryan, B. T. Garibdzhanyan,

G. M. Stepanyan, V. M. Okhikyan,

and S. A. Papoyan

UDC 615.277.3:547.854.4].012.1+615.277.3:547.854.4.099

In spite of the fact that 5-fluorouracil is widely used in oncological practice, ac- according to the data of clinicians it frequently produces serious toxic reactions [1-3].

In order to investigate the effect of the alkoxybenzyl group on the antitumor activity and toxicity of 5-fluorouracil, we carried out the synthesis of a series of N_1 -substituted 5-fluorouracils (I), according to the following scheme:

The benzylchlorides used as starting materials were obtained by a method previously described [4-6].

We synthesized compounds I by heating bis-trimethylsilyl-oxy-5-fluorouracil [7] with the appropriate benzyl chlorides at 190 - 210°C (Table 1). The structure of I was confirmed by NMR and mass spectroscopy data.

The aromatic protons N_1 -(3-chloro-, 3-bromo-4-alkoxybenzyl)-5-fluorouracils produce a group of lines characteristic of 1, 3, 4-substituted benzenes (quartet at 7.15 ppm and singlet at 7.4 ppm). The methylene protons appear as a singlet in the region of 4.8 ppm. The proton in position 6 of the pyrimidine ring appears as a doublet in the region of 7.80 - 7.85 ppm as a result of interaction with the fluorine nucleus.

The peaks of molecular ions in the mass spectra of compounds I are of medium intensity. The most intense peaks are those due to the simple cleavage of the pyrimidine—benzene N-C bond, with localization of the positive charge on the alkoxybenzilic fragment (ions A and A^1).

In the mass spectrum of Ia the maximum is the peak due to ion A, and in the spectrum of 1b, the peak of ion A^1 (m/e 141, 143). Of noticeable intensity are also the peaks of the ion with m/e of 105, which in the case of Ia is formed from the ion $[A-CH_3]^+$ through the loss

A. L. Midzhonyan Institute of Micro-organic Chemistry, Academy of Sciences of the Armenian SSR, Erevan. Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 12, No. 5, pp. 38-40, May, 1978. Original article submitted August 18, 1977.

TABLE 1. N1-substituted Benzyl-5-fluorouracils (Ia-i)

		0.244 10	
	5	12,46 11,87 11,34 11,34 11,34 10,85	1
% ° ¢	z	9,84 9,38 8,96 8,96 8,58 8,58 8,51 8,17	8,17
Calculated, %	H	8,44,4 6,505 7,505	3,52
- Ca	၁	50,63 52,27 53,77 53,77 53,77 55,14 43,78 43,78	45,21
	Molecular formula	C12H10CIN2O3 C14H14CIN2O3 C14H14CIN2O3 C14H14CIN2O3 C14H16CIN2O3 C17H10BFN2O3 C12H10BFN2O3 C12H10BFN2O3 C12H10BFN2O3	C ₁₃ H ₁₂ BrFN ₂ O ₃
	CI	12,74 11,55 11,85 11,75 10,52	1
%	z	9,53 9,64 8,64 8,75 8,84 8,84 8,84 8,84	8,42
Found, %	ж	3,48 3,48 3,48 3,48 3,48 3,36	3,82
	O	50,32 52,57 53,45 53,47 55,43 44,01 45,10 43,51	45,50
	\mathbb{R}_f	0,62 0,69 0,75 0,67 0,77 0,77 0,80	98,0
Melting	point, °C	185—6 169—70 175—6 132—3 173—4 186—7 179—80 196—7	186—7
Yield	%	73,8 73,1 73,6 73,6 58,2 58,2 58,4 66,4	70,0
	R ₂	ಹಹಿಹರ ರರರರ	Br
R,		CH3O C2H5O C2H5O C3H5O C3H5O C4H5O CH3O C2H5O	I.
	X	жини инин Стин инин	و الا
. mo	punod	ing decreases	1

TABLE 2. Summary of Data on the Toxicity and Antitumor Activity of N₁-substituted Benzyl-5-fluorouracils (Ia-i)

	Toxicity	Toxicity for mice with sin-	with sin-		Anti	Antitumor activity in rats	ctivity	in rats	
	gle injection	tion		600		e	Difee	mice	;e
Compound	LD100	LD50	MPD	ng/kg	coma 45	S vec Sukemi	Iym- phosar		arco-ascitic Ehrlich carci-
		mg/kg	cg.			'n.		180	noma
la 1	631	526	431	30	+-	+-	+-	0	0 (
I I	1400	579 1190	1051	50/100	++	++	++	00	00
ΡI	009	200	444	20	+	<u>-</u> +	-+-	0	0
ب 1	1500	1200	1000	50/100	+-	+<	+	00	00
120	220	400	320	38	+	0		0	0
In 5-fuoro-	400	320	300	30	0	0		0	0
uracil	210	125	62	25/10	+	+++	++++	+	+ - + +

Note: 0 - no effect; (+) - inhibition of tumor growth up to 30-59%; (++) - up to 60 - 79%; (+++) - up to 80 - 95%.

of a chlorine atom, and in the case of Ib, from ion A1 through the loss of a molecule of hydrochloric acid.

The purity and identification of I were established by means of thin-layer chromatography.

EXPERIMENTAL

Biological

The investigation of antitumor properties of these preparations was conducted according to previously described methods [8]. The toxicity was investigated on unbred white male mice by a single intraperitoneal injection. The chemotherapeutic experiments were conducted on unbread rats and mice with various transplanted tumors (sarcoma 45, Svec leukemia, Pliss lymphosarcoma, sarcoma 180, and ascitic Ehrlich carcinoma).

The data obtained (shown in Table 2) indicate that all the synthesized derivatives of 5-fluorouracil (I) have a considerably lower toxicity as compared with 5-fluorouracil. We have also noticed that against rat sarcoma 45, the majority of the compounds investigated (except Nos. 6 and 8) show an antitumor activity approximately equal to that of 5-fluorouracil; against Svec leukemia and Pliss lymphosarcoma these compounds have a lower activity than 5-fluorouracil. These compounds differ from 5-fluorouracil in that they have no effect on the mice tumors investigated.

In conclusion, the introduction of the alkoxybenzylic group into the N_1 -position of 5-fluorouracil lowers not only the toxicity but also the antitumor activity of this parent compound.

EXPERIMENTAL

Chemical

NMR spectra were obtained on the Varian T-60 instrument (7% solution in hexadeuteroeth-anol). The mass spectra were taken on the MKh-1303 instrument with direct introduction of the sample into the ion source. Thin-layer chromatography was carried out on microplates (SiO₂, G, ether-acetone 49:1, development with iodine vapor).

 N_1 -(3-chloro-3-bromo-4-alkoxy- and 2-Alkoxy-5-bromobenzy1)-5-fluorouracils (I). A mixture of 2.74 g (0.01 mole) of bis-trimethylsilyloxy-5-fluorouracil and 0.01 mole of the appropriately substituted benzyl chloride was heated in a Claissen flask at 190 - 210°C for 30 min. During this time about 1 g of trimethylchlorosilane was distilled off. To the hot mixture was added 30 ml of carbon tetrachloride. The warm solution was rapidily filtered, and 5 ml of absolute methanol were added to the mother liquor. The crystals were filtered, washed with carbon tetrachloride, and recrystallized from ethanol (see Table 1).

LITERATURE CITED

- 1. G. L. Gold, Cancer Res., 19, 935 (1959).
- 2. R. B. Olson, J. Natl. Cancer Inst., 25, 133 (1960).
- 3. M. A. Schneiderman, Cancer Chemother. Rep., 16, 107 (1962).
- 4. A. A. Aroyan, T. R. Obsepyan, R. G. Melik-Ogandzhanyan, et al., Arm. Khim. Zh., 22, 406 (1969).
- 5. A. A. Aroyan, Izv. AN Arm. SSR, Otd. Khim. Nauk, 17, 532 (1964).
- 6. A. A. Aroyan, Arm. Khim. Zh., 19, 226 (1966).
- 7. English Pat. No. 1,080,491, Chem. Abstr. 68, 96109 (1968).
- 8. B. T. Garibdzhanyan and G. M. Stepanyan, Biol. Zh. Arm., 26, 27 (1973).