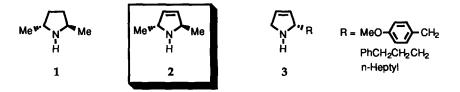
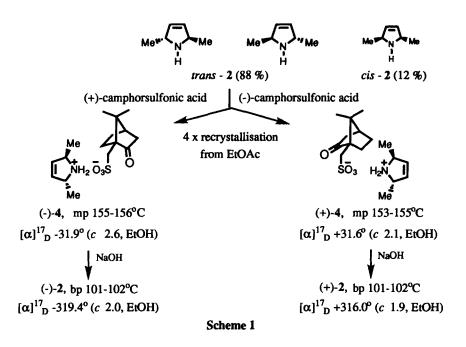


0040-4039(95)01086-6

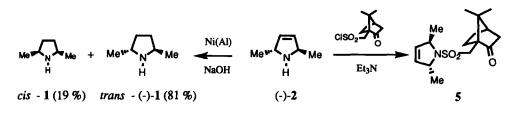

2,5 -Dimethyl-∆³-pyrroline: a Novel Optically Active C₂-Symmetric Secondary Amine

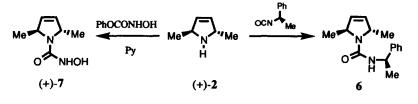
G. V. Shustov*1 and A. Rauk

Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4


Abstract: Optical resolution of 2,5-dimethyl- Δ^3 -pyrroline 2 has been carried out via diastereomeric salts with (+)- and (-)-10-camphorsulfonic acid. The absolute configuration of enantiomers 2 is determined and a possibility of their application in asymmetric synthesis is shown.

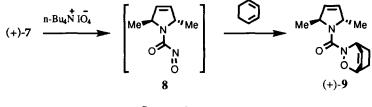
C₂-Symmetric compounds are important sources of chirality in asymmetric synthesis.² Optically active 2,5-dimethylpyrrolidine $(1)^3$ in the form of its derivatives is widely used and gives, as rule, excellent results.^{2,4}




2,5-Dimethyl- Δ^3 -pyrroline (2) is a close analog of pyrrolidine 1 and might serve as well as the latter, and additionally provide access (*via* reduction or functionalization of the double bond)^{5,6} to chiral pyrrolidines with or without C₂ symmetry. Furthermore, 2 is a simple model for investigation of chiroptical properties of the Δ^3 -pyrroline (allylamine) chromophore which is found in numerous alkaloids.⁷ Some 2-monosubstituted Δ^3 -pyrrolines 3 have been obtained in optically active form by an asymmetric α -alkylation of chiral formamidine derivatives.⁶ In the present communication we wish to report a simple resolution of pyrroline 2 *via* diastereometric salts with (+)- and (-)-10-camphorsulfonic acid (Scheme 1).

Pyrroline 2 can be synthesized⁸ or purchased⁹ as a mixture of the *cis(meso)* and *trans(d,l)* isomers which are separated by recrystallisation of their N-tosyl derivatives followed by removing of the tosyl group.¹⁰ A procedure for the direct synthesis of 2,5-*trans*-dialkyl- Δ^3 -pyrrolines with 95% stereoselectivity has also been developed.^{5a} However we have found that (+)- and (-)-2 are readily obtained by treating the mixture of *cis,trans* -isomers (*ca.* 12:88), prepared according to Evans,⁸ with (+)- or (-)-10-camphorsulfonic acid (see Scheme 1).¹¹ The yields of (+)- and (-)-2 were each *ca.* 20% of the stereomeric mixture. GC-MS analyses revealed them to contain *ca.* 1% of *cis-*2.

The optical purities of (-)-2 ca. 95 % and (+)-2 ca. 94 % were determined by ¹H NMR of the diastereomeric derivatives $5,6^{12}$ (Scheme 2), having previously established that the reactions of racemic *trans*-2 with one equivalent of (1S)-(+)-10-camphorsulfonyl chloride (Et₃N, CH₂Cl₂, 5 h, RT) or (1R)-(+)- α -methylbenzyl isocyanate (CH₂Cl₂, 10 h, RT) were not accompanied by kinetic enrichment of one diastereomer. Integration of the peaks of 10-H_AH_B system of sulfonamide 5 [(2R,5R)-diastereomer: 2.80 and 3.80 ppm; (2S,2S): 3.10 and 3.52 ppm], and of the 2,5-methyl groups of urea 6 [(2S,5S)-diastereomer: 1.31 ppm; (2R,5R): 1.33 ppm] were used for determination of the ratio of the individual diastereomers.



Scheme 2

The reduction of (-)-2 with Raney nickel (6 equiv. of Ni-Al alloy, 10 % aq. NaOH, 7 h, RT) yielded (R,R)-(-)-2,5-dimethylpyrrolidine 1 (Scheme 2). Hence, the (R,R) absolute configuration for (-)-2 and (S,S) for (+)-2 follows. About 19 % of *cis*-isomer 1 was formed together with *trans* -(-)- 1^{13} in this reduction.

The use of optically active pyrroline 2 as a chiral auxiliary is illustrated (Scheme 3) by a hetero-Diels-Alder reaction that was earlier studied^{4e,f, 14} with N-carbamoylnitroso derivatives of other chiral amines.

Scheme 3

The hydroxamic acid (+)-7¹⁵ was prepared by reaction of (+)-2 with phenoxycarbonyl hydroxylamine according to the procedure^{4e} developed for the derivative of pyrrolidine 1. Oxidation of (+)-7 with (Bu4N)IO4 (CH₂Cl₂, 1.5 h, RT) in the presence of a twofold excess of cyclohexadiene leads to the adduct (+)-9.¹⁶ The ¹H and ¹³C NMR spectra of the crude reaction mixture showed only one set of signals. We think that only one diastereomer 9 is the product of the reaction of dienophile 8 with cyclohexadiene because the coincidence of chemical shifts of <u>all</u> protons and ¹³C nuclei of two possible diastereomers is very unlikely. Known hetero-Diels-Alder reactions^{4e,f, 14b} of other carbamoylnitroso compounds possessing the amine moiety with local C₂ symmetry are characterized by very high diastereoselectivity and the diastereomers of the adducts obtained independently always have different ¹H and ¹³C chemical shifts. According to a stereochemical model of the transition state of such kind of reactions which was offered earlier,^{4e, 14} one can suppose the absolute configuration for the bicyclic moiety of adduct (+)-9 to be (1'S,4'R).

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada and NATO for financial support of this work and we are grateful to Prof. M. H. Benn for valuable discussions.

References and Notes

- 1. On leave from the Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia. Present address: Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4.
- 2. Whitesell, J. K. Chem., Rev. 1989, 89, 1581.
- (a) Whitesell, J. K.; Felman, S. W. J. Org. Chem. 1977, 42, 1663. (b) Schlessinger, R. H.; Iwanowicz, E. J. Tetrahedron Lett.
 1987, 28, 2083. (c) Yamazaki, T.; Gimi, R.; Welch, J. T. Synlett 1991, 8, 573. (d) Short, R. P.; Kennedy, R. M.; Masamune, S. J. Org. Chem.. 1989, 54, 1755. (e) Zwaagstra, M. E.; Meetsma, A.; Feringa, B. L. Tetrahedron: Asymmetry 1993, 4, 2163. (f) Kim, M. J.; Lee, I.S. Synlett 1993, 767.
- (a) Hart, D. J.; Huang, H. C.; Krishnamurthy, R.; Schwartz, T. J. Am. Chem. Soc. 1989, 111, 7507. (b) Porter, N. A.; Breyer, R.; Swann, E.; Nally, J.; Pradhan, J.; Allen, T.; McPhail, A. T. J. Am. Chem. Soc. 1991, 113, 7002. (c) Yamazaki, T.; Welch, J. T.; Plummer, J. S.; Gimi, R. H. Tetrahedron Lett. 1991, 32, 4267. (d) Chen, L.; Ghosez, L. Tetrahedron: Asymmetry 1991, 2, 1181. (e) Defoin, A.; Brouillard-Poichet, A.; Streith, J. Helv. Chim. Acta 1991, 74, 103. (f) Defoin, A.; Pires, J.; Tissot, I.; Tschamber, T.; Bur, D.; Zehnder, M.; Streith, J. Tetrahedron: Asymmetry 1991, 2, 1209.

- (a) Macdonald, T. L. J. Org. Chem. 1980, 45, 193. (b) Brown, H. C.; Vara Prasad, J. V. N.; Gupta, A. K. J. Org. Chem. 1986, 51, 4296.
- (a) Meyers, A. I.; Dickman, D. A.; Bailey, T. R. J. Am. Chem. Soc. 1985, 107, 7974.
 (b) Meyers, A. I.; Dupre, B. Heterocycles, 1987, 25, 113.
- Hartmann, T.; Witte, L. In Alkaloids, Chemical and Biological Perspectives; Pelletier, S. W. Ed.; Pergamon: Oxford, Vol. 9, 1995; pp. 155-233 and references therein.
- 8. Evans, G. G. J. Am. Chem. Soc. 1951, 73, 5230.
- 9. Aldrich Chemical Co., Milwaukee, WI.
- 10. Lemal, D. M.; McGregor, S. D. J. Am. Chem. Soc. 1966, 88, 1335.
- 11. A solution of 2 (20.0 g, 0.206 mol, *cis/trans* = ca. 12:88, prepared from its picrate⁸ mp 106-109^oC) in MeOH (50 mL) was added to a solution of (+)-10-camphorsulfonic acid⁹ (46.5 g, 0.200 mol) in MeOH (250 mL) with stirring and cooling (15^oC) and the solvent was evaporated in *vacuo*. Four recrystallizations of the residue (65.8 g, mp 98-139^oC) from EtOAc (500, 1000, 2 x 900 mL) afforded salt (-)-4 (14.8 g) (Scheme 1). The salt was dissolved in a minimum amount of water and the solution was added dropwise to NaOH pellets, simultaneously distilling off the crude amine (bp 100-105^oC) which was then twice distilled over KOH pellets, providing (-)-2 (3.80 g, 19 % yield based on the stereomeric mixture) (Scheme 1). ¹H NMR (200 MHz, CDC1₃): δ 1.14 (6H, d, J = 6.5 Hz, 2,5-Me), 1.69 (1H, br.s, NH), 4.10 (2H, m, 2,5-H), 5.71 (2H, 3,4-H). Pyrroline (+)-2 was similarly obtained using (-)-10-camphorsulfonic acid.
- 12. Compounds 5,6 were identified on the ¹H NMR (400 MHz) spectra. (2R,5R)-1-[(1'S)-10'-Camphorsulfonyl]-2,5-dimethyl-Δ³-pyrroline 5 in C₆D₆: δ 0.64 (3H, 7'-Me), 0.87 (1H, m, 6'-H_{exO}), 1.10 (3H, 7'-Me), 1.32 (6H, d, J = 6.5 Hz, 2,5-Me), 1.48 (1H, t, J = 4.5 Hz, 4'-H), 1.51 (1H, d, J = 18.0 Hz, 3'-H_{endO}), 1.63 (2H, m, 5'-H_{exO}, 6'-H_{endO}), 2.00 (1H, m, 3'-H_{exO}), 2.60 (1H, m, 5'-H_{endO}), 2.80 (1H, d, J = 14.6 Hz, 10'-H_A), 3.80 (1H, d, J = 14.6 Hz, 10'-H_B), 4.41 (2H, m, 2,5-H), 5.00 (2H, 3,4-H). (2S,5S)-1-[(αR)-N-α-Methylbenzylcarbamoyl]-2,5-dimethyl-Δ³-pyrroline 6 in CDCl₃: δ 1.31 (6H, d, J = 6.1 Hz, 2,5-Me), 1.52 (3H, d, J = 7.0 Hz, α-Me), 4.38 (1H, br.d, J = 7.0 Hz, NH), 4.59 (2H, br.m, 2,5-H), 5.07 (1H, m, α-H), 5.63 (2H, 3,4-H), 7.22-7.36 (5H, m, Ph).
- 13. The optical rotation angle $[\alpha]^{17}$ _D -8.5° (c 3, EtOH) was measured for the mixture of isomers 1 (ca. 19:81 cis:trans); lit.^{3a}: $[\alpha]^{20}$ _D -11.5° (c 1.5, EtOH) for pure (R,R)-1.
- (a) Brouillard-Poichet, A.; Defoin, A.; Streith, J. Tetrahedron Lett. 1989, 30, 7061. (b) Gouverneur, V.; Ghosez, L. Tetrahedron: Asymmetry 1990, 1, 363. (c) Gouverneur, V.; Ghosez, L. Tetrahedron Lett. 1991, 32, 5349. (d) Gouverneur, V.; Dive, G.; Ghosez, L. Tetrahedron: Asymmetry 1991, 2, 1173. (e) Defoin, A.; Brouillard-Poichet, A.; Streith, J. Helv. Chim. Acta 1992,75, 109.
- (25,55)-2,5-Dimethyl-Δ³-pyrroline-1-carbohydroxamic acid 7 was purified by flash chromatography (EtOAc), yield 78 %. Colourless crystals, mp 48-51°C, [α]²⁰_D +241.6° (c 1.3, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.34 (6H, d, J = 6.2 Hz, 2,5-Me), 4.63 (2H, m, 2,5-H), 5.65 (2H, 3,4-H), 6.95 (1H, OH), 7.70 (1H, br.s, NH); ¹³C (50 MHz, CDCl₃): δ 19.95 (2,5-Me), 60.20 (C₂,C₅), 130.12 (C₃,C₄), 159.53 (CO).
- 3-[(25,55)-2,5-Dimethyl-Δ³-pyrroline-1-carbonyl]-2-oxa-3-azabicyclo[2.2.2]oct-5-ene 9 was purified by flash chromatography (EtOAc-hexane 70:30), yield 86 %. Colourless crystals, mp 82-83°C, [α]²⁰D +299.8° (c 0.9, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 1.23 (6H, d, J = 6.1 Hz, 2,5-Me), 1.41 (2H, m, 7'-H_{endo}, 8'-H_{endo}), 2.16 (1H, m, 8'-H_{exo}), 2.33 (1H, m, 7'-H_{exo}), 4.68 (1H, m, J = 5.5, 3.5, 1.8 Hz, 4'-H), 4.72 (1H, m, J = 5.4, 3.6, 2.0 Hz, 1'-H), 4.81 (2H, m, 2,5-H), 5.60 (2H, 3,4-H), 6.58 (2H, m, J = 8.1, 5.5, 5.4, 1.8 Hz, 5',6'-H); ¹³C (50 MHz, CDCl₃): δ 20.19 (2,5-Me), 20.68 (C8'), 23.38 (C7'), 50.23 (C4'), 61.21 (C2,C5), 70.52 (C1'), 129.96 (C3,C4), 131.62 (C5), 132.43 (C6'), 159.76 (CO).

(Received in USA 10 May 1995; revised 7 June 1995; accepted 8 June 1995)