Ammonolysis of N-Acylpyroglutamic Acid. Permanganate-oxidation of Peptides. II.

Keisuke Torigoe, Yoshiaki Motoki, and Ichiro Muramatsu*

Department of Chemistry, College of Science, Rikkyo University, Nishi-ikebukuro, Toshima-ku, Tokyo 171

(Received July 22, 1980)

Synopsis. The reaction of N-acylpyroglutamic acid with ammonia proceeds in two pathways. The one results in N-acylglutamine as a product, and the other in pyroglutamic acid and an amide formed from the N-acyl group. The ratio of the yields of the two reactions changes with the N-acyl group, being correlated with the acidity of the carboxylic acid from which the N-acyl group is derived, and also with the steric hindrance of the group.

In a previous paper,¹⁾ it was reported that Z-Pro-OH²⁾ was oxidized to Z-pGlu-OH with KMnO₄ in the presence of strong acid. In further study, it has been found that Bz-Pro-OH is also oxidized to give Bz-pGlu-OH, and that the ammonolysis of Bz-pGlu-OH gives H-pGlu-OH as a main product. The latter result is in contrast to the well-known fact that Z-pGlu-OH is ammonolyzed to give Z-Gln-OH.³⁾ That is to say, two pathways seem possible in the ammonolysis of N-acyl-pGlu-OH.

In order to elucidate the factors determining the pathway, we synthesized several N-acyl-pGlu-OH's and their amides, and investigated the relationship between the N-acyl group and the reaction pathway.

Results and Discussion

The pathways in the ammonolysis of N-acyl-pGlu-OH are shown in Fig. 1. The reaction proceeds to produce N-acyl-Gln-OH with accompanying ring-opening in path I, and H-pGlu-OH and the amide in path II.

O R-
$$\overset{\text{NH}_{3}/\text{MeOH}}{-}$$
COOH $\overset{\text{NH}_{3}/\text{MeOH}}{-}$
R-CO-NH-CH-COOH
$$\overset{\text{CH}_{2}}{-}$$

$$\overset{\text{CH}_{2}\text{CONH}_{2}}{-}$$

$$\overset{\text{II}}{-}$$

$$\overset{\text{HN}}{-}$$
COOH $+$ RCONH₂

The results of ammonolysis are summarized in Table 1. Boc-pGlu-OH gave Boc-Gln-OH quantitatively, while pNBz-pGlu-OH gave H-pGlu-OH. The products vary with the acidity of the carboxylic acid from which the *N*-acyl group was derived. Namely, path II becomes predominant over I with increasing acidity of the carboxylic acid.

When the tosyl group was used as an N-protector, the product was Tos-Gln-OH only, although TosOH is a strong acid, showing deviation from the above correlation.

Ammonolysis of (A) Z-Ala-pGlu-NH₂ and (B) Z-Val-pGlu-NH₂ was carried out. In the case of (A),

Table 1. Ratio of the products in ammonolysis of N-acyl-pGlu-OH^{a)}

Acyl group	N-acyl-Gln-OH(Path I)	H-pGlu-Ol (Path II)	pK_{a}^{4}
Boc	1.00	0	
Z	0.83	0.17	
Ac	0.60	0.40	AcOH 4.67(5.84) ^{b)}
\mathbf{Bz}	0.15	0.85	BzOH 4.21(5.42)b)
pNBz	0.04	0.96	pNBzOH 3.44(4.55) ^{b)}
Tos	1.00	0	TosOH 1.70

a) Optically active (L-) in case of Boc, Z, and Tos; optically inactive in case of Ac, Bz, and pNBz. b) Measured in 50% MeOH at 27 °C.

the peptide bond was cleaved almost quantitatively to give Z–Ala–NH $_2$ and H–pGlu–NH $_2$ (path II). In the case of (B), the reaction proceeded in two pathways, giving Z–Val–NH $_2$ and H–pGlu–NH $_2$ (path II), and Z–Val–Gln–NH $_2$ (path I) in the ratio 7:3.

The pK_a of Z-Ala-OH in 50% MeOH at 27 °C was determined to be 4.96, smaller than that of BzOH. Consequently the result of the ammonolysis of Z-Ala-pGlu-NH₂ is compatible with that of N-acyl-pGlu-OH. The pK_a of Z-Val-OH was 5.00 under the same conditions. It is conceivable that the ammonolysis of Z-Val-pGlu-NH₂ would give a similar result to that of Z-Ala-pGlu-NH₂. However, path I in the reaction of the valine peptide was not negligible. This shows that not only acidity but also steric hindrance of the N-acyl group affects the reaction pathway.

Z-Ala-pGlu-NH₂ and Z-Val-pGlu-NH₂ used in this study were obtained by the oxidation of Z-Ala-Pro-NH₂ and Z-Val-Pro-NH₂ by the method reported.¹⁾

Experimental

All melting points were uncorrected. NMR spectra were obtained on a Hitachi-Perkin Elmer R-20A Spectrometer, and IR spectra on a Hitachi Grating Infrared Spectrophotometer, Model 215. All N-acyl-pGlu-OH compounds were synthesized by the method reported.^{3,5)} All amino acids in peptide amides were of the L-series.

Ac-pGlu-OH·DCHA: Recrystallized from EtOH-EtOAc; yield⁶) 32%; mp 174—175 °C; NMR (measured as free acid in CDCl₃) δ 2.54 (3H, s, CH₃-CO), 2.00—2.90 (4H, m, CH-CH₂-CH₂-CO), 4.73 (1H, m, >CH-COH); IR (KBr) 1630, 1695, 1735 cm⁻¹ (>C=O). Found: C, 64.83; H, 9.54; N, 8.11%. Calcd for C₁₉H₃₂O₄N₂: C, 64.74; H, 9.15; N, 7.95%.

Bz-pGlu-OH: Purified with a column of Sephadex LH-20 (solvent, benzene–EtOH–H₂O, 50 : 15 : 1), and recrystallized from EtOH–EtOAc; yield⁶ 38%; mp 142—144 °C; NMR (CDCl₃–CD₃OD) δ 2.00—2.80 (4H, m, CH–C $\underline{\text{H}}_2$ –C $\underline{\text{H}}_2$ –CO), 4.88 (1H, m, >C $\underline{\text{H}}$ –COOH), 7.20—7.80 (5H, m, C₆ $\underline{\text{H}}_5$ –CO); IR (KBr) 1655, 1710, 1730, 1770 cm⁻¹ (>C=O). Found: C, 61.43; H, 4.63; N, 5.95%. Calcd for C₁₂H₁₁O₄N: C, 61.80;

H, 4.75; N, 6.01%.

pNBz–pGlu–OH: Recrystallized from EtOAc; yield⁶⁾ 41%; mp 180—181 °C; NMR (CDCl₃–CD₃OD) δ 1.80—2.80 (4H, m, CH–CH₂–CH₂–CO), 4.92 (1H, m, \times CH–COOH), 7.50—8.40 (4H, m, NO₂–C₆H₄–CO); IR (KBr) 1695, 1705, 1750 cm⁻¹ (\times C=O). Found: C, 51.60; H, 3.34; N, 10.23%. Calcd for C₁₂H₁₀O₆N₂: C, 51.81; H, 3.62; N, 10.07%.

Z-Ala-pGlu-NH₂: Recrystallized from EtOAc-ether; yield⁷⁾ 38%; mp 156—158 °C; $[\alpha]_{2}^{26}$ —67.6° (c 1.0, EtOH); NMR (CDCl₃-CD₃OD) δ 1.37 (3H, d, \rangle CH-CH₃), 1.90—2.80 (4H, m, CH-CH₂-CH₂-CO), 4.56 (1H, m, \rangle CH-CONH₂), 5.06 (2H, s, C₆H₅-CH₂O), 5.43 (1H, q, NH-CH-CO), 7.31 (5H, s, C₆H₅-CH₂); IR (KBr) 1670, 1690, 1745 cm⁻¹ (\rangle C=O). Found: C, 57.79; H, 6.05; N, 12.44%. Calcd for C₁₆H₁₉O₅N₃: C, 57.65; H, 5.75; N, 12.61%.

Z-Val-pGlu-NH₂: Purified with a column of silica gel (solvent, CHCl₃-EtOAc, 1:4), and recrystallized from EtOAc-hexane; yield⁷⁾ 17%; mp 145—147 °C; [α]₂¹⁶ -33.1° (c 1.2, MeOH); NMR (CDCl₃-CD₃OD) δ 0.80 (3H, d, CH-CH₃), 1.05 (3H, d, CH-CH₃), 1.90–2.80 (5H, m, CH-CH₂-CH₂-CO and CH₃-CH-CH₃), 4.65 (1H, m, CH-CONH₂), 5.09 (2H, s, C₆H₅-CH₂-O), 5.50 (1H, m, NH-CH-CO), 7.34 (5H, s, C₆H₅-CH₂); IR (KBr) 1670, 1685, 1745 cm⁻¹ (XC=O). Found: C, 60.08; H, 6.46; N, 11.89%. Calcd for C₁₈H₂₃O₅N₃: C, 59.82; H, 6.42; N, 11.63%.

Method for Ammonolysis and Analysis of Products. To 1—3 mg of samples was added NH₃-saturated MeOH at 0 °C. The resulting solutions were allowed to stand at 0 °C overnight, and concentrated in vacuo. The products were identified with authentic samples⁸) by TLC⁹) on Kieselgel 60F-254 plate. The products were separated also by preparative TLC.¹⁰) Silica gel layers at the position containing the products were raked up and treated with 6 M HCl for 10 h at 110 °C for hydrolysis. The ratios of amino acids in the hydrolyzates were determined by an amino acid analyzer (JEOL JLC-6AS).

We wish to thank Mr. Akira Ide for technical assistance and the staff of the Research Laboratory of Toyo Jozo Co. Ltd. for elemental analyses.

References

- 1) I. Muramatsu, Y. Motoki, Y. Yabuuchi, and H. Komachi, Chem. Lett., 1977, 1253.
- 2) Z=benzyloxycarbonyl; Boc=t-butoxycarbonyl; Ac=acetyl; Bz=benzoyl; pNBz=p-nitrobenzoyl; Tos=p-toluenesulfonyl; H-pGlu-OH=pyroglutamic acid. The abbreviation for amino acids and peptides is in accordance with the rules of the IUPAC-IBU Commission of Biochemical Nomenclature.
 - 3) H. Gibian and E. Klieger, Ann. Chem., 640, 145 (1961).
- 4) J. A. Dean, "Handbook of Chemistry," 11th ed McGraw Hill Company (1973).
 - 5) E. Schröder and E. Klieger, Ann. Chem., 673, 196 (1964).
 - 6) From N-acyl-Glu-OH.
 - 7) From N-acyl-Pro-NH₂.
- 8) Z-Val-Gln-NH₂ was prepared from Z-Val-Glu-(OMe)₂ by treatment with NH₃; mp 274—276 °C; $[\alpha]_{5}^{26}$ -18.3° (c 0.6, AcOH). Found: C, 56.85; H, 7.08; N, 14.51%. Calcd for $C_{18}H_{26}O_5N_4$: C, 57.13; H, 6.93; N, 14.81%.
- 9) Solvents for N-acyl-pGlu-OH; n-BuOH-HCOOH-H₂O, 4:1:1; n-BuOH-AcOH-H₂O, 4:1:1; n-BuOH-pyridine-AcOH-H₂O, 4:1:1:2; for N-acyl-pGlu-NH₂; CHCl₃-MeOH-AcOH, 18:2:1; CHCl₃-EtOH-HCOOH, 18:2:1; CHCl₃-MeOH-AcOH-pyridine, 18:2:1:1.
- 10) Solvent for *N*-acyl-pGlu-OH; *n*-BuOH-HCOOH-H₂O, 4:1:1; for *N*-acyl-pGlu-NH₂; CHCl₃-MeOH-AcOH, 18:2:1.