Journal of Organometallic Chemistry, 74 (1974) 209—225 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

SPECTRES DE VIBRATION DE COMPOSES ORGANIQUES DES ELEMENTS DE LA COLONNE IVB

V*. DERIVES CYCLIQUES OXYGENES DU SILICIUM ET DE L'ETAIN: OXA-1 SILA-2 CYCLOPENTANES, OXA-1 STANNA-2 CYCLOPENTANES ET CYCLOPENTENES

ANNETTE MARCHAND et PIERRE GERVAL (avec la collaboration technique de MARIE-HELENE SOULARD)

Laboratoire de Chimie des Composés Organiques du Silicium et de l'Etain, associé au C.N.R.S., Université de Bordeaux I, 351, cours de la Libération, 33405 - Talence (France)

MICHEL MASSOL et JACQUES BARRAU

Laboratoire de Chimie des Organominéraux, Université Paul Sabatier, 118, Route de Narbonne, 31400 - Toulouse (France)

(Reçu le 7 février 1974)

Summary

Infrared and Raman spectra of two 1-oxa-2-stannacyclopentanes, three 1-oxa-2-stannacyclopentenes and three 1-oxa-2-silacyclopentanes have been examined in the 3600—100 cm⁻¹ region. Assignments of the main bands observed are discussed.

Résumé

Nous avons examiné, entre 3600 et 100 cm⁻¹, les spectres infrarouges et Raman de deux oxa-1 stanna-2 cyclopentanes, trois oxa-1 stanna-2 cyclopentènes et trois oxa-1 sila-2 cyclopentanes. Les attributions des principales bandes observées sont discutées.

Introduction

Dans un article précédent [1], nous avons présenté l'étude des spectres de vibration de séries d'oxa-1 germa-2 cyclopentanes et cyclopentènes. Nous pour-

^{*} Pour partie IV, voir ref. 1.

Di-n-butyl-2 oxa-1 stanna-2 cyclopentanes et cyclopentènes

$$n-Bu_2Sn$$
 $n-Bu_2Sn$
 $n-Bu$

suivons ce travail en examinant ici, par spectrographies infrarouge et Raman, les composés oxygénés cycliques à cinq chaînons du silicium et de l'étain, dont la liste est indiquée sur le Tableau 1.

Etant donnée l'instabilité de ces composés, nous nous sommes attachés tout d'abord à déterminer la nature des espèces en présence (monomère ou polymères).

Nous complèterons cette étude par la comparaison des fréquences de vibration caractéristiques de dérivés oxygénés à cinq chaînons (saturés ou non saturés) des éléments de la colonne IVB.

A. Dérivés de l'étain

La synthèse des dérivés cycliques I-V a été décrite par ailleurs [2, 3]. Les composés saturés I et II et insaturé III sont des solides amorphes alors que les stannacyclopentènes IV et V sont liquides l'un au-dessus de 70°, l'autre à 20°. La détermination de la masse moléculaire, par cryométrie dans le benzène, de ces deux derniers a conduit à une valeur double de celle attendue [3]. La plupart de ces produits stanniques sont insolubles dans les solvants organiques usuels ce qui nous a limités pour interpréter les spectres et pour déceler la présence des formes monomères et polymères.

Aussi, les composés solides ont-ils été examinés par spectrographie Raman

à l'état pur et en infrarouge sous forme de poudre dispersée dans le bromure de potassium ou en suspension dans le nujol ou l'hexachlorobutadiène. Le spectre de diffusion du dérivé IV n'a pu être enregistré en raison de l'état visqueux et coloré qu'il présente à température ambiante. Dans certains cas, les spectres d'absorption réalisés sur des suspensions dans le tétrachlorure de carbone, le bromoforme ou le chloroforme ont permis d'obtenir des compléments d'information.

L. Attributions des vibrations caractéristiques des groupes butyles liés à l'étain

Par analogie avec des études antérieures [4, 5], nous situons ces vibrations dans les dérivés I, II, III, IV et V aux fréquences suivantes: 2849 ± 7 , 1465 ± 2 , 1446 ± 3 , 1420 ± 2 , 1374 ± 2 , 1351 ± 4 , 1297 ± 5 , 1182 ± 6 , 1069 ± 3 , 1053 ± 8 , 882 ± 1 , 861 ± 4 , 742 ± 5 , 679 ± 12 et 661 ± 3 cm⁻¹. Les attributions proposées sont indiquées dans le Tableau 2.

- II. Attributions des vibrations caractéristiques des hétérocycles oxygénés stanniques
 - 1. Oxastannacyclopentanes I et II
- (a) Vibrations de squelette et vibrations des méthylènes du cycle. La comparaison des spectres des oxastanna cyclopentanes et cyclopentènes avec des dialcoxydialkylétains [4], d'une part, et des stannacyclopentanes [6], d'autre part, met en évidence un certain nombre de bandes attribuables à des cycles à cinq chaînons.

L'intense absorption à 537 cm⁻¹ dans I et 538 cm⁻¹ dans II nous paraît caractéristique de tels composés. En effet, on a observé une forte bande à 529 et 534 cm⁻¹ dans le dibutyl et le diphényl stannacyclopentane [6] respectivement et à 545 cm⁻¹ dans le cyclopentane [7].

De même, les bandes relevées à 718 et 714 cm⁻¹ dans I et II et observées à 719 ± 5 cm⁻¹ dans des stannacycloalcanes nous semblent également typiques. Enfin, par analogie avec les travaux de Palm [8] qui situe la vibration de "wagging" des CH₂ du tétrahydrofuranne à 1333 cm⁻¹, nous retenons pour ce mouvement les suites à 1332 ± 1 cm⁻¹ dans I et II et 1339 ± 1 cm⁻¹ dans les stannacyclopentanes [6]. Notons que ces bandes n'existent pas sur les spectres des dérivés linéaires [4, 5], ce qui confirme nos attributions.

(b) Vibrations de valence $\nu(CO)$. Dans des travaux spectrographiques antérieurs [4, 9], l'identification des élongations $\nu(CO)$ reposait sur le déplacement de fréquence observé sur certaines bandes lorsque l'on plaçait la molécule dans un solvant apolaire, puis dans un solvant donneur de protons; pour des dérivés alcoxylés, cycliques ou non, la bande attribuée ainsi à $\nu(CO)$ correspondait toujours à l'absorption la plus intense du spectre dans la région attendue.

Vue l'insolubilité des composés stanniques, un effet de solvant n'a pu être réalisé. Cependant, nous avons retenu pour $\nu(CO)$ dans le dérivé $\underline{\Pi}$ la très forte bande située à 1033 cm⁻¹; cette position est tout à fait analogue à celle attribuée à $\nu(CO)$ dans le dérivé germanié isologue méthyl-4 diéthyl-2 oxa-1 germa-2 cyclopentanes.

Pour le dérivé I, on note les deux absorptions intenses à 1051 et 983 cm⁻¹, alors que l'on attend une vibration $\nu(CO)$ à une fréquence voisine de 1030 cm⁻¹ comme dans II; la moyenne des deux valeurs observées correspondrait mieux à celle prévue. Une résonance entre deux vibrations voisines pourrait peut-être

TABLEAU 2

FREQUENCES INFRAROUGES ET RAMAN ET ATTRIBUTIONS DES BANDES DES OXASTANNA CYCLOPENTANES ET CYCLOPENTENES (v en cm - 1 FF, très fort; F, fort; mF, moyennement fort; m, moyennement faible; f, faible; f, très faible, P, polarisée; 1, large; e, épaulement; v, valence; $\beta, \gamma, \delta, de formations; r, rocking; w, wagging; t, twisting; v/Bu), vibrations des groupes butyles.$

					-				
Compose I		Composé II		Composé III		Composé IV	Composé V	:	Attri
IR (poudre)	Raman (poudre)	IR (poudre)	Raman (poudre)	IR (poudre)	Raman (poudre)	IR (poudre)	IR (solution)	Raman (liquide)	SITOSANO
	-			3038f	3045m	3026f	3021£	3007fP	v(#CH)
-				e 2979m	2987m	2990m	-	2968F	
					2960m			2963F	-
2946F		2946F	2956mf	2948F	2957m	2951F	2941 FF	_	-
			2935mf		2936F			2933FP	v(CH ₃), et CH ₂)C
2902F		2915mF	2919mF	2911mF	2915FF	2917F		2917FP	
		=	2907F		2893F		2890 FF	2893m	
2888F		2864m	2873F	2870mF	2877m	2868m		2877mFP	v _B (CH ₂)Sn
2842mF		2856m	2855m	2849m	2855mF	2851mF	2849 FF	2854mFP	vs(CH2)Sn
					2827mF				
			2813f	2818m	2815F			-	
2807m		2804f		2809m					
-							1603f	e 1599	
				1597mF	1601m	1597F	1589mf	1587mP	n(0=C)
							e 1580	-	-
							1551f 1543ff	1552f	
					1491mf			•	
1463F		1463m	1466m	1465m		1464F	1464mF	_	δa(CH3)C
1467mF		1451m	1451m		1451F	1455mF	1455mF	o 1456 J	et 8 (CH2)C
1444m	1437£	e 1449		1443m		1446mF		1446F	6's(CH3)c
			•		4	1440f		1	
1421mf			1420f		1422f	1421f		1420m	6 (CH2)Sn
				1418f		1417mf	1416m		
14041		1401ff							-
1374m		1375f		1373mf		1375mF	1373m	1372f	δ _S (CH ₃)C
1371m					1	;			-
1365m			-	1360mf	1363m	1361mF			

(d suivre)

Compose 1		Composé II		Composé III		Composé IV	Composé V		Attri
IR (poudre)	Raman (poudre)	IR (poudre)	Raman (poudre)	IR (poudre)	Raman (poudre)	IR (poudre)	IR (solution)	Raman (Hquide)	putions
-		846m		845ff		801m	e 842f	848mfP	
769f 752f	805f 781f		808f	е 759т		1797 9	785m 774F	831mt 789mfP	
743f		е 737		747F		745FF	e 744f	7 46£	r(CH2)C et
718F	1111	714mF					722FF	727£ 721£	v(cycle) insat.
	710f	686f		J689		700F	685mF		γ(=CH) γ(=CH)
668 663		663mF		668F 660f		e 664m 653F	671mF 661mF	676f 662ff } 659 653f	v(Bu)
				643F	645f	625mf	626m	625m	
601m	599F	593f	597f	602m	610m	599m	614m		ν _a (OSnC)
537FF	562f 538F	e 663m 538F		578F	585f	580m 557f	601m 553mf	603FP	v (cycle) insuraté va(CSnC) et v(cycle) saturé
	500f	e 521m e 505f		e 533			5161	517FP	v _s (CSnC) et
	447£			475f		490mf	493m 485f 448mf	494f 458f	v _s (OSnC)
	384mF							442f 437f 415m	-

provoquer l'éclatement des niveaux d'énergie et conduire aux deux bandes pointées.

On pourrait aussi avoir affaire à un mélange de monomère et de polymères cristallisés. En effet, la présence simultanée d'une bande libre à 1051 cm⁻¹ et d'une bande associée à 983 cm⁻¹ n'est pas à exclure, bien qu'on n'observe pas en général un tel écart de fréquence [10], mais l'insolubilité du dérivé empêche toute confirmation par effet de dilution.

S'il est difficile de conclure dans le cas du composé I, on peut penser, par contre, que le dérivé II renferme un cycle monomère. En effet, la mise en évidence de bandes caractéristiques de cycles à cinq chaînons observées ici comme dans les stannacyclopentanes monomères [6] et la même fréquence pointée pour $\nu(CO)$ dans II et dans son dérivé germanié isologue, monomère en solution, en sont une preuve.

ont une preuve.

(c) Vibrations du groupe

C

C

O

C

O

blable que le système CSnC des deux groupes butyles se comporte différement du système CSnO engagé dans le cycle tendu. On attend donc, entre 650 et 450 cm^{-1} , les vibrations de valence $\nu_a(\text{CSnC})$ et $\nu_s(\text{CSnC})$ et $\nu_s(\text{CSnO})$.

Le calcul a montré que les mouvements $\nu_{\rm a}({\rm SnC_3})$ et $\nu_{\rm s}({\rm SnC_3})$ des aminotributylétains [5] se situaient à 520 et 507 cm⁻¹, tandis que l'élongation $\nu({\rm SnN})$ correspondait à 590 cm⁻¹. Dans l'hexabutylstannoxane [4], les vibrations de valence $\nu_{\rm a}({\rm SnOSn})$ et $\nu_{\rm s}({\rm SnOSn})$ ont été identifiées à 780 et 400 cm⁻¹ respectivement ce qui situe le vibrateur moyen $\nu({\rm SnO})$ à 590 cm⁻¹.

Pour la série étudiée, les bandes voisines de 530 cm⁻¹ sont attribuées à $\nu_{\rm a}({\rm CSnC})$ et à des vibrations propres au cycle. Le mode $\nu_{\rm s}({\rm CSnC})$ n'a pas été identifié, le spectre Raman n'ayant pu être enregistré au-dessous de 590 cm⁻¹ pour II.

On prévoit la vibration $v_a(\mathrm{OSnC})$ à une fréquence légèrement supérieure à celle de $v_m(\mathrm{SnO})$: la suite forte à 600 cm⁻¹ pourrait convenir. Il est possible que la bande Raman observée à cette fréquence provienne d'une vibration propre aux groupes butyles comme nous l'avons suggéré lors de l'étude du N-éthylhexabutyldistannazane [5]. Le mouvement $v_s(\mathrm{OSnC})$ est attendu à une fréquence inférieure à celle de $v_s(\mathrm{SnC_2})$ soit au-dessous de 500 cm⁻¹, région que nous n'avons pu étudier.

2. Oxastannacyclopentènes III, IV et V

(a) Vibrations de squelette. Ces vibrations ont été difficiles à identifier en raison du petit nombre de composés. Par analogie avec les résultats [11,12] du cyclopentène, les suites à 907 ± 5 et 580-600 cm⁻¹ pourraient être attribuées aux mouvements de squelette comme dans les oxagermacyclopentènes [1].

Les fortes bandes à 746 ± 1 cm⁻¹ dans III et IV ne peuvent pas avoir seulement pour origine un "rocking" du CH₂ comme dans I et II puisque IV ne possède pas de groupe méthylène dans le cycle. On peut penser qu'elles sont aussi des vibrations de squelette. Dans V, l'épaule faible à 744 cm⁻¹ serait due à $r(CH_2)$ des butyles et les deux fortes bandes à 774 et 722 cm⁻¹ proviendraient de l'éclatement par couplage d'un mouvement du squelette avec une vibration des substituants méthyles.

(b) Vibrations de valence du groupe HC=CH d'un cyclopentène stannique. Les vibrations de valence ν (=CH) ne sont pas très intenses. Elles se situent à

3038 dans III, 3026 dans IV et 3021 cm⁻¹ dans V. La suite à 1600 \pm 3 cm⁻¹ correspond à l'élongation v(C=C). Les absorptions situées à 692 \pm 7 cm⁻¹ pourraient provenir de la déformation $\gamma(=CH)$, caractéristique d'un dérivé cis. Il n'est pas possible d'identifier avec certitude les autres vibrations du groupe.

(c) Vibrations de valence v(CO). Nous retenons pour v(CO) les bandes fortes 1027 cm⁻¹ dans III, 1006 cm⁻¹ dans IV et 964 cm⁻¹ dans V, en raison de leur intensité. L'effet de solvant polaire réalisé sur V confirme cette attribution, (abaissement de 5 cm⁻¹).

La différence de fréquence observée sur la vibration v(CO) de ces trois composés s'explique par la masse et les effets électroniques des méthyles, comme certains d'entre nous l'ont déjà noté pour des alcoxyétains linéaires [4, 9].

Sur le spectra de V, à l'état liquide pur ou dans un solvant inerte, l'absorption v(CO) à 964 cm⁻¹ est accompagnée d'une seconde bande forte à 946 cm⁻¹ qui disparait dans le chloroforme. Par dilution progressive, l'intensité de cette dernière diminue tandis qu'augmente celle de plus haute fréquence. La bande à 946 cm⁻¹ correspond à la vibration v(CO) associée par analogie avec certains dialkyldialcoxyétains [10, 13]. On peut donc penser que le composé V renferme un cycle monomère lié à une autre molécule par coordination entre les atomes d'oxygène et d'étain (structure III') [13, 14]. Ces résultats confiment la détermination de la masse moléculaire par cryométrie dans le benzène [2] (masse double de celle attendue).

(d) Vibrations de valence du groupe
$$C$$
 Sn . Comme dans les oxastan-

nacyclopentanes nous attribuons les couples de bandes 602-578 dans III, 599-557 dans IV et 614-553 dans V à l'ensemble des vibrations $\nu_a(\text{OSnC})$ et $\nu_a(\text{CSnC})$.

Les élongations $v_s(OSnC)$ et $v_s(CSnC)$, difficiles à identifier dans III, se situeraient dans V à 517 cm⁻¹ où l'on observe une bande Raman forte et polarisée.

B. Dérivés du silicium

Nous indiquons en appendice le mode de préparation des dérivés VI à VIII. Leur synthèse et leur étude spectrographique ont été particulièrement délicates en raison de la rapide tendance de ces composés à se polymériser. Si le dérivé diméthylé VIII est assez stable et reste monomère quelques heures, par contre, les composés méthylé VII et non substitué VI, se polymérisent très rapidement. De grandes précautions ont donc été nécessaires pour nous assurer de la nature du cycle obtenu.

Ainsi, dans le cas du composé VI, nous avons dû enregistrer son spectre immédiatement après sa distillation, d'une part en liquide pur, d'autre part à l'état gazeux. Le Tableau 3 indique les fréquences des bandes infrarouges observées dans les deux cas, et montre déjà des différences importantes en particulier entre 1000 et 1100 cm⁻¹.

I. Attributions des vibrations des hétérocycles oxygénés siliciés à cinq chaînons 1. Vibrations de valence v(CO)

Dans la région ci-dessus, le spectre infrarouge du dérivé VI à l'état gazeux présente une forte absorption à 1030 cm^{-1} que nous attribuons à la vibration $\nu(CO)$ en raison de son intensité. La présence d'une telle bande nous paraît indiquer que le dérivé gazeux est essentiellement sous forme monomère pour les raisons suivantes: elle se situe à la même fréquence que dans le diéthyl-2 oxa-1 germa-2 cyclopentane monomère [1] en solution dans CCl_4 .

D'autre part, sa fréquence est voisine de celle (1040 cm^{-1}) observée par Koerner [15] sur le spectre infrarouge du méthyl-2 éthoxy-2 oxa-1 sila-2 cyclopentane à l'état gazeux. D'après cet auteur, elle caractérise une forme monomère. De plus, la vibration $\nu(CO)$ d'un dérivé cyclique doit se situer à une fréquence inférieure à celle d'un dérivé linéaire (1090 cm^{-1} dans un alcoxysilane [16]).

Sur le spectre du dérivé VI à l'état liquide pur ou en solution dans CS_2 , on observe cinq bandes entre 1100 et 1000 cm⁻¹ dont nous allons discuter l'origine par comparaison avec le spectre du tétraméthyl-1,1,6,6 tétraoxa-2,5,7,10 disila-1,6 cyclodécane étudié auparavant [17]. Ce dérivé se présentait principalement sous forme d'un cycle à dix chaînons dont on avait attribué la bande 1094 cm⁻¹ à la vibration $\nu(CO)$.

Outre cette bande, on pointait deux autres absorptions à 1047 et 998 cm⁻¹ dues à la vibration $\nu(CO)$ du monomère et du dimère de coordination respectivement. En effet, on observait un abaissement de la fréquence 1047 cm⁻¹ et la disparition presque totale de la bande à 998 cm⁻¹ quand on passait d'une solution dans le sulfure de carbone à une solution dans le chloroforme. De plus, un effet de dilution montrait un balancement des intensités de ces deux bandes en faveur de celle de plus haute fréquence (1047 cm⁻¹).

On peut interpréter ces observations par la présence prépondérante d'un grand cycle C et d'un dérive soit de type A, soit de type B, suivant le solvant. L'évolution se poursuivrait ensuite vers la formation de polymères D.

En ce qui concerne le dérivé VI, par analogie avec ce qui précède, nous attribuons la bande $1005~\rm cm^{-1}$ à la vibration $\nu(CO)$ du dimère de coordination B'. Les absorptions 1090, 1060, 1050 et $1030~\rm cm^{-1}$ dont les intensités relatives va-

TABLEAU 3 FREQUENCES INFRAROUGES ET RAMAN ET ATTRIBUTIONS DES BANDES DES OXASILACYCLOPENTANES (voir légende du Tableau 2)

Composé VI			Composé VII			Composé VIII			Attri-
IR (gaz)	IR (Ugui- de pur)	Raman (solu- tion CCl4)	IR (liqui- de pur)	IR (solu- tion)	Raman (liqui- de pur)	IR (liqui- de pur)	IR (solu- tion)	Raman (liquide de pur)	STECTOR
2945mF	2942mF	2963nı		2966F A 2959	2965mF	2958F	2966F	2965m	va et v' g(CH3)Si
2920m	2920mF		2933F	2921m	2926mP	2930m	2927m	2930mP	va(CH2)C, Si
	-	2906FF	2899rn	2900f 2891f	2903FP	2895m	2898m	2899FP	et vs(CH3)C vs(CH3)Si
2850mf	2858mf	2873mFP	2849m	2869mf 2848f	2872mP 2847f	2870m e 2850f	2869m 2848f	2873m e 2854ff	vs(CH3)Si
		2804f	110707					-	
14651	14651	14721	1475£	14761	1478mf				
1450f		1454mf	e 1456mf	1454mf	1457m	e 1460	1460f		5 (CH ₃ et CH ₂)
1430f	1430f	1439f	1449m		e 1440f	1449mf	1446m	1449mF	.
	1408f	1412m	1404mf	1408mf	1412mf	1407f	1412mf	1411m	6's(CH ₃)Si
	1380f						1378mF	1377£	•
		1372mf	1372mf	1375mf		1373m	1374mF	1373f	δ ₃ (CH ₃) _C
-	13401						1345mf	1348mf 1336mf	
			1319f	1324f	1324f		1318f	1308mf	6(СН)
	1302f	1292m	1299f	1303f	1302mf		1302mf	1298mf	
,			e 1269mf	1274f	1274f	1277f	1277£	1279ff	r(CH3)C
1255m	1246F	1251m	1248FF	1252FF	12671 1243mf	1250F	1252FF	12531	8.(CH2)8i
						1192ff	1190mf	1189m	,
	1184mf	1184mf 1171f	1178mf	1181mf	1182mf	1175ff	1180mf	1181mf	
-			1164f	1168f			1167f		r(CH3)C
1152ff	1152f	1137f	1144f	1148ff	,	1135ff	1133mf	1133m	
11201 e 1090mf	1090FF	10971	THOUI	THOME	1121mf	1090mf	1108m 1092F	11111 1092f	S(CH2) cycle

		٨(٥٥)	N. HOW	(CH2)cycle et r(CH3)c r(CH3)	3	. (33)"	ν(CO) et ν(C-CH ₃)			respiration cycle			r(CH ₃)Si		r(CH ₃)Si et	v _B (OSiC)	r(CH ₃)Si		$r(CH_2)_{Cycle}$				va(CSIC)			"s(OSIC) et	7(CCC) _{cycle}	v _s (CSIC)	:
	1055mf	110001	10171	10001 980mf		9376	931f	928f		895£		884mf	850f		830f		814ff	784£	758mfP	750mP	741mfP		688£		661mfP	640FFP	!	618mP 596f	574ff
1063F	1055F	170001	1016F	. H626	966mF	0.36 17 17	1	928FF		897mf	890rnF	883mF	852F	844F	829mF	821mF	814mF	786mf	762f	749f	741f		\$069			639f		618 <i>f</i> f	
e 1065m	1055m	10001	1015F	978F	965m	93088	·				890f			842FF		e 815F		785£			740f		J069			639f			
	1058mf	1031f	9	111066 980f	,	948mf			914mf				849mf		829f	823f	803mFP	e 790m	763mf		741f	e 699mf	687m		656m	637FFP		e 619mFP	
1076mf	1057FF	1032FFF	1007mf	99 61111 98 4 m f		948mf			916f	895f			853FF, 1			823F	802mF	e 792m	761m		739m	695m	e 688m	e 670f	655f	637mf		616f	
e 1064mF	1055FF	1031FF	1005m	990xii		945m			905mf	897mf			858FF	848FF		821F	803F		759m		738mf	694mf	688mf						
10594		10186							916mf		884mf 👾												1689					624f	554mf
1080m		1030f	1005m	TORR					920m		887m			835FF			795mF	785mf					690mf					600f	
1080mf		1030F	1005m	1006		955f			J606			865m		840m		815mF	795mF		762mf				692f			6381		605f	

(à suivre)

_
_
(suite
*
•3
~
- 44
~
(1)
5
5
5
EAU
5

Composé VI			Composé VII			Composé VIII	,		Attri-]
IR (gaz)	IR (liquide pur)	Raman (solu- tion CCl ₄)	IR (liqui- de pur)	IR (solu- tion)	Raman (liqui- de pur)	IR (llqui- de pur)	IR (solu- tion)	Raman (liquide pur)	-	
-				540mf	539m	540ff	540f	539mfP 504f	γ(cycle)	}
				47.11	478f		496ff	491mf		
							4361	436mP		
	456£			456mf	467mf	425ff	4221	425ff		
405mf					401FP	400f		403FP	γ(cycle)	
-								е 395К		
					355#	372ff		376f		
					316f	339ff		3421		
		279f			290mP?			271m		-
		260mf			256f					
					223f					
					211F			209F	v _s (CSIC)	
					e 185m			184f	-	

rient avec le temps proviendraient d'une vibration $\nu(CO)$ de diverses formes de la molécule. Ceci a pu être confirmé par des cryométries dans le benzène qui ont donné des pourcentages variables de la forme monomère. Ainsi, aussitôt après la distillation, on trouve 75% de monomère caractérisé par la bande à 1030 cm⁻¹ comme nous l'avons vu précédemment. L'absorption à 1090 cm⁻¹ est attribuée aux polymères D', et les bandes 1060 cm⁻¹ (présente dans le gaz) et 1050 cm⁻¹ (absente du gaz) sont affectées respectivement à un dimère à dix chaînons libre C' ou associé C'' [18].

Pour le dérivé VII, nous attribuons à la vibration $\nu(CO)$ la bande forte relevée à $1032~\rm cm^{-1}$ pour le liquide pur et pour une solution dans CCl_4 car sa fréquence s'abaisse à $1024~\rm cm^{-1}$ quand on utilise le chloroforme comme solvant. Notons que la fréquence de cette vibration est identique à celle du dérivé VI en phase gazeuse. Il semble donc que le dérivé VII fraichement préparé, soit sous forme monomère essentiellement.

Pour le dérivé VIII, c'est le doublet 936-928 cm⁻¹ que nous retenons pour une telle vibration en raison de sa grande intensité et de sa sensibilité à un effet de solvant polaire (4 cm⁻¹). Ce doublet proviendrait de la vibration ν (CO) couplée avec la vibration ν (C—C) de la liaison carbone—méthyle située en α de l'oxygène.

L'apparition des bandes 1092, 1063 et 1055 cm⁻¹ (1063 cm⁻¹ s'abaissant à 1060 cm⁻¹ dans un solvant polaire) au cours du temps, indiquerait des proportions variables des diverses formes dimères et polymères.

2. Vibrations de squelette et vibrations des méthylènes du cycle

Il est possible que la suite à 995 \pm 5 cm⁻¹ provienne d'un "twisting" des méthylènes du cycle comme dans les dihalogéno-1,1 sila-1 cyclopentanes étudiés par Philen [19] en même temps que d'un "rocking" de CH_3 , $r(CH_3)_C$ pour les dérivés VII et VIII.

On remarque entre 980 et 900 cm⁻¹, un certain nombre de bandes plus ou moins intenses absentes des spectres de dialkyldialcoxysilanes linéaires [17].

Dans une étude récente sur le méthylcyclopentane et le méthyl-2 tétrahydrofuranne, Durig [20] situe une vibration de "respiration du cycle" à 893 et 920 cm⁻¹ respectivement. Par ailleurs, Philen [19] place ce même mouvement vers 940 cm⁻¹ dans ses silacyclopentanes.

Dans notre cas, on observe sur les spectres des dérivés VI (gazeux) et VII (liquide), une absorption à 955 et 945 cm⁻¹ respectivement que l'on pourrait attribuer par analogie avec les travaux ci-dessus, à une vibration du cycle.

Pour le dérivé VIII, le spectre présente un certain nombre de bandes qui résulteraient du couplage de l'élongation $\nu(CO)$ avec des vibrations du cycle et des substituants méthyles comme semblent l'indiquer les déplacements de fréquences observées par effet de solvant polaire entre 900 et 1000 cm⁻¹.

En accord avec différents auteurs [20, 21, 22], nous attribuons aux "rockings" du CH_2 du cycle les bandes à 761 \pm 1 cm⁻¹.

Enfin les bandes à 546 ± 7 et 403 ± 2 cm⁻¹ auraient pour origine des déformations de cycle car elles sont également présentes sur les spectres de divers composés cycliques à cinq chaînons [20, 22] et en particulier du diméthyl-2,2 dioxolanne-1,3 étudié par Barker [23].

Par analogie avec les dialkyldioxasilacycloalcanes [17], nous attendons les vibrations de valence $\nu_a(\text{OSiC})$ et $\nu_s(\text{OSiC})$, d'une part, et $\nu_a(\text{CSiC})$ et $\nu_s(\text{CSiC})$ d'autre part.

Nous attribuons à ces dernières les bandes à 690 \pm 2 et 618 \pm 1 cm⁻¹ respectivement en accord avec des travaux antérieurs [17, 24, 25]. L'élongation $\nu_s(\text{OSiC})$ correspond à la forte bande Raman polarisée observée à 638 \pm 2 cm⁻¹ sur les spectres des composés VII et VIII car sa fréquence est intermédiaire entre celles de $\nu_s(\text{OSiO})$ (700 cm⁻¹) et de $\nu_s(\text{CSiC})$.

Entre 750 et 850 cm⁻¹, nous prévoyons le mouvement $\nu_{\rm a}({\rm OSiC})$ en même temps que les "rockings" ${\rm r(CH_3)Si.}$ En comparant les spectres à l'état gazeux du dérivé VI, nous remarquons un balancement des intensités des bandes à 840 et 815 cm⁻¹. Or, nous savons que cette dernière provient d'une vibration d'une forme monomère alors que l'absorption à 840 cm⁻¹ correspond à un dérivé dimère ou polymère. Une bande qui subit l'influence de la structure ne peut avoir pour origine qu'une vibration faisant intervenir SiO donc $\nu_{\rm a}({\rm OSiC})$ vraisemblablement.

La forte bande Raman à 210 \pm 1 cm⁻¹ est attribuée à la déformation symétrique $\delta_s(SiC_2)$ par analogie avec le triméthylméthoxysilane [26].

II. Attribution des vibrations caractéristiques des groupes méthyles liés au silicium

Le Tableau 3 montre que les spectres des dérivés VII et VIII sont assez différents dans leur ensemble. Cependant, certaines vibrations ayant déjà fait l'objet de plusieurs publications [16, 24, 25], nous nous contenterons de les énumérer sans les discuter.

La suite observée sur les spectres Raman à 2965 \pm 1 cm⁻¹ à laquelle correspond toujours une forte bande d'absorption a pour origine l'ensemble des mouvements $\nu_a(\text{CH}_3)_{\text{Si}}$ et ν_s' (CH₃)_{Si} tandis que la bande Raman forte et polarisée pointée à 2903 \pm 4 cm⁻¹ est attribuée à la vibration symétrique $\nu_s(\text{CH}_3)_{\text{Si}}$.

Aux deux déformations $\delta'_s(CH_3)_{Si}$ correspondent les bandes $14\overline{1}0 \pm 2$ cm⁻¹ et aux deux vibrations symétriques $\delta_s(CH_3)_{Si}$, les bandes vers 1252 cm⁻¹. Les modes $\delta_a(CH_3)_{Si}$, calculés vers 1440 cm⁻¹ dans les dérivés triméthylsiliciés [26], doivent se trouver dans le massif attribué aux vibrations $\delta_a(CH_3)_C$ et $\delta_a(CH_2)_{C.Si}$.

Les quatre "rockings" des méthyles $r(CH_3)_{S}$, souvent forts en infrarouge, se situent à 855 ± 3 , 844 ± 4 , 822 ± 1 et 805 ± 10 cm⁻¹.

Certaines de ces attributions ont été récemment [26] confirmées par un calcul de modes normaux de vibration effectué sur des molécules comportant les groupes (CH₃)_{3Si} et (CD₃)_{3Si}.

Cet ensemble de résultats nous a permis d'attribuer un certain nombre de bandes aux principales vibrations et en particulier à la vibration de valence $\nu(CO)$. La caractérisation de cette dernière nous a conduits à préciser la structure des composés étudiés qui sera confirmée par une comparaison ultérieure de leur basicité vis à vis du méthanol.

Partie expérimentale

I. Origine des composés étudiés

(a) Etain

Les dérivés saturés I et II ont été obtenus par échange direct entre le dihydrure de dibutylétain et un diallyloxydibutylétain [27, 2].

drure de dibutylétain et un diallyloxydibutylétain [27, 2].
$$\begin{array}{c} \text{n-Bu}_2\text{SnH}_2 + \text{Bu}_2\text{Sn}(\text{O-CH}_2\text{-C-CH}_2)_2 \xrightarrow{t^0 \text{ normale}} \\ \text{R} \\ \\ \text{2Bu}_2(\text{H})\text{SnOCH}_2\text{-CH=CH}_2 \rightarrow \text{Bu}_2\text{Sn} \\ \\ \text{O---CH}_2 \end{array}$$

Les oxa-1 stanna-2 cyclopentènes III à V résultent de l'action du dihydrure de dibutylétain avec divers alcools de type propargylique [2, 3].

$$n-Bu_2SnH_2 + HO-C(R_1R_2)-C \equiv CH \xrightarrow{-H_2} n-Bu_2Sn \xrightarrow{CH=CH} R_1$$

$$R_2$$

(b) Silicium

La préparation du dérivé cyclique non substitué VI a fait l'objet de nombreuses publications [2, 18, 28-30]. Il en est de même du composé VII possédant un méthyle en β du silicium [2, 29, 31]. La synthèse du dérivé diméthylé VIII est plus récente [2, 32]. Dans les trois cas, le catalyseur H_2PtCl_6 permet la cyclisation d'alcénoxyhydrosilanes.

II. Caractéristiques physico-chimiques

(a) Spectrographie infrarouge

Les spectres ont été enregistrés à l'aide d'un spectrographe infrarouge Leitz

double faisceau simple passage, équipé de prismes ou de réseaux. Les caractéristiques de l'appareil pour les diverses régions étudiées ont souvent été publiées [1, 5, 9].

Les spectres à l'état gazeux ont été réalisés par vaporisation du produit dans une cellule à gaz de 10 cm de longueur à faces de KBr préalablement mise sous un vide de 1 mmHg.

Les composés sensibles à l'hydrolyse ont été manipulés en caisson anhydre, sous atmosphère d'argon ou d'hélium. Selon les régions spectrales, nous avons utilisé pour l'enregistrement des spectres des composés en solution dans les solvants organiques, des cellules d'épaisseur variable à faces de NaCl ou KBr. Les concentrations ont été de l'ordre de 0.1-1M pour des épaisseurs de 0.1 mm.

En ce qui concerne les solvants, nous avons utilisé le tétrachlorure de carbonne pour la région de 4000—850 cm⁻¹, le sulfure de carbone de 1300—400 cm⁻¹ et parfois le cyclohexane et l'hexane de 850—400 cm⁻¹; enfin le chloroforme ou le bromoforme ont été choisis comme donneur de protons.

Sur chaque spectre, nous avons repéré la position des bandes d'absorption des produits étudiés, en enregistrant des spectres de référence (vapeur d'eau, méthane, ammoniac et trichloro-1.2.4 benzène.

(b) Spectrographie Raman

Les spectres de diffusion des composés à l'état pur ou en solution dans le tétrachlorure de carbone, ont été enregistrés sur un spectrographe Raman Coderg type CH-1 à source laser He—Ne (raie excitatrice à 6328 Å) de puissance 100 mW. En général, la fente utilisée a une largeur spectrale de 4 à 8 cm⁻¹. Nous avons employé, pour les poudres, le spectrographe Raman Coderg PH-1 équipé d'une source Laser He—Ne de 60 mW.

Remerciements

Les auteurs remercient Monsieur le Professeur J. Satgé et Monsieur J.C. Pommier, Maître de Recherches, pour les discussions et les suggestions dont ils nous ont fait bénéficier au cours de ce travail.

Bibliographie

- 1 A. Marchand, M. Massol, J. Barrau et J. Satgé, J. Organometal. Chem., 63 (1973) 175.
- 2 B. Bouyssiere, Thèse 3ème cycle, Toulouse, 1971.
- 3 M. Massol, J. Satgé et B. Bouyssiere, Synth. Inorg. Metalorg. Chem., 3 (1973) 1.
- 4 J. Mendelsohn, A. Marchand et J. Valade, J. Organometal. Chem., 6 (1966) 25.
- 5 A. Marchand, C. Lemerle et M.T. Forel, J. Organometal. Chem., 42 (1972) 353.
- 6 M. Bourhis, Thèse 3ème cycle, Bordeaux 1967.
- 7 F.H. Kruse et D.W. Scott, J. Mol. Spectrosc., 20 (1966) 276.
- 8 A. Palm et E.R. Bissell, Spectrochim. Acta, 16 (1960) 459.
- 9 A. Marchand, M.T. Forel, M. Lebedeff et J. Valade, J. Organometal, Chem., 26 (1971) 69.
- 10 J. Mendelsohn, J.C. Pommier et J. Valade, C.R. Acad. Sci., Paris, Sér. C, 263 (1966) 921.
- 11 L.M. Sverdlov et E.N. Krainov, Opt. Spectrosc., 6 (1959) 214.
- 12 W.C. Harris et C.T. Longshore, J. Mol. Struct., 16 (1973) 187.
- 13 J.C. Pommier, E. Mendes, J. Valade et J. Housty, J. Organometal. Chem., 55 (1973) C19.
- 14 P.Y. Smith, R.F.M. White et L. Smith, J. Organometal. Chem., 40 (1972) 341.
- 15 G. Koerner et G. Rossmy, Makromol. Chem., 97 (1966) 241.
- 16 A. Marchand, J. Valade, M.T. Forel, M.L. Josien et R. Calas, J. Chim. Phys., 59 (1962) 1142.
- 17 A. Marchand et J. Valade, J. Organometal. Chem., 12 (1968) 305.

- 18 W.H. Knoth Jr. et R.V. Lindsey Jr., J. Amer. Chem. Soc., 80 (1958) 4106.
- 19 D.L. Philen, T.H. Chao et J. Lasne, J. Mol. Struct., 16 (1973) 417.
- 20 J.R. Durig, K.L. Kizer et J.M. Karriker, J. Raman Spectrosc., 1 (1973) 17.
- 21 N. Baggett, S.A. Barker, A.B. Foster, R.H. Moore et D.H. Whiffen, J. Chem. Soc., (1960) 4565.
- 22 F. Vovelle, A. Le Roy et S. Odiot, J. Mol. Struct., 11 (1972) 53.
- 23 S.A. Barker, E.J. Bourne, R.M. Pinkard et D.H. Whiffen, J. Chem. Soc., (1959) 802.
- 24 R. Calas, A. Marchand, E. Frainnet et P. Gerval, Bull. Soc. Chim. Fr., 6 (1968) 2478.
- 25 P. Gerval, Thèse Bordeaux, 1973.
- 26 A. Marchand et M.T. Forel, J. Organometal. Chem., sous presse; Bull. Soc. Chim. Fr., sous presse.
- 27 B.R. Laliberte, W. Davidsohn et M.G. Henry, J. Organometal. Chem., 5 (1966) 526.
- 28 J.L. Speier, M.P. David et B.A. Eynon, J. Org. Chem., 25 (1960) 1637.
- 29 V.F. Mironov, N.S. Fedotov et V.L. Kozlikov, Khim. Geterosikl. Soed., 2 (1968) 354.
- 30 W. Simmler, H. Neiderprum et H. Sattleger, Chem. Ber., 99 (1966) 1368.
- 31 V.L. Kozlikov, N.S. Fedotov et V.F. Mironov, Zh. Obshch. Khim., 39 (1969) 2284.
- 32 J.C. Florence, These 3ème cycle, Toulouse, 1970.