NEW SOURCES OF STEROID SAPOGENINS-XIX¹

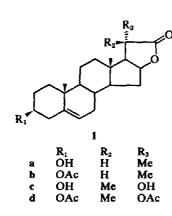
20S-HYDROXYVESPERTILIN, A NEW STEROID LACTONE FROM SOLANUM VESPERTILIO

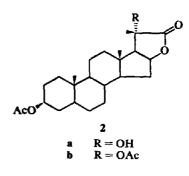
A. G. GONZÁLEZ,* R. FREIRE, C. G. FRANCISCO, J. A. SALAZAR and E. SUÁREZ Organic Chemistry Department, University of La Laguna, Instituto de Investigaciones Químicas, C.S.I.C., Tenerife, Spain

(Received in the UK 16 January 1973: Accepted for publication 2 February 1973)

Abstract – From stems and leaves of *Solanum vespertilio* Ait. 20*S*-hydroxyvespertilin (1c), a new steroid lactone, has been isolated and the structure confirmed by synthesis of its dihydro derivative from tigogenin. Ic proved to be identical with a dihydroxy lactone obtained by Gashchenko *et al* as by-product of the conversion of diosgenin to 16-dehydropregnenolone. The stereochemistry at C_{20} proposed by these authors is revised.

INTRODUCTION


Solanum vespertilio Ait. is a Solanacea endemic to the Canary Isles. In a previous paper² we reported the identification of the two new natural steroids 16-dehydropregnenolone and vespertilin (1a) in the unhydrolysed ethanolic extract of the fruits, no steroid alkaloids being detected. The present work describes the isolation of the aforesaid two steroids, β -sitosterol, diosgenin, solasodine, tomatidenol and 20S-hydroxyvespertilin (1c) from stems and leaves of this same plant. The structure of the last compound was established as (20S)-3 β ,16 β ,20-trihydroxy-pregn-5-en-20-carboxylic acid (22,16)-lactone, being isolated for the first time from Nature.


RESULTS AND DISCUSSION

20S-Hydroxyvespertilin (1c), $C_{22}H_{32}O_4$, m.p. $308-310^\circ$, $[\alpha]_D - 64^\circ$, was eluted together with the probable artefact $\Delta^{3.5}$ -solasodine and a new spirostan sapogenin (now being investigated) and

 $\dagger \tau$ -scale.

separated by preparative TLC of the corresponding acetates. By mild acetylation for 3 days or treatment at 100° for 1 hr with Ac₂O in pyridine 1c forms the diacetate 1d, C₂₆H₃₆O₆, which in the IR lacks OH absorptions. The bands at 1780 and 1750 cm⁻¹ are assigned to a γ -lactone and those at 3030, 2830 and 830 cm⁻¹ to a Δ^5 . The presence of this double bond and the probable location of an OH group with β configuration at C₃ is also suggested by two multiplets at 4.58 (H—C₆) and 5.25(H--C₃) with $W_{1/2} = 10$ and 25 Hz respectively in the NMR spectrum of 1d (Table 1). Furthermore, the value found for the Me- C_{10} (8.96) agrees with the calculated one by the method of Zürcher (8.95).³ Comparison of the chemical shifts of the Me groups of 1d with those of vespertilin acetate (1b) shows that the signal for the Me— C_{10} is found at the same position, the Me- C_{13} is deshielded by 0.10 ppm, and the Me-C₂₀ appears as a singlet at 8.20 and not as a doublet. We therefore deduce that a tertiary OH group must be situated at C_{20} . The spectral data thus suggest that 1c corresponds to 20-hydroxyvespertilin.

1731

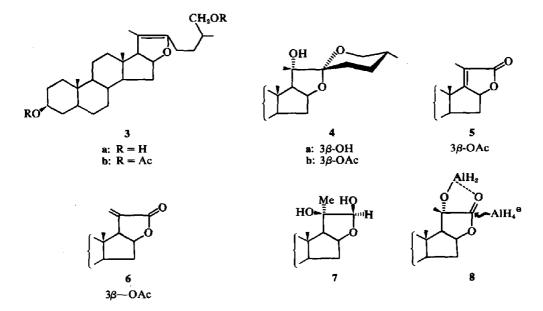

Compound	2HC ₂₁	H-C ₆	H-C ₃	MeC ₂₀	Me-C ₁₀	Me-C ₁₃
Vespertilin		4-62	5.40	8.70	8.97	9.24
acetate (1b) ²		m[10]	m[25]	d(7)	\$	5
20S-Hydroxy-		4.58	6.30	8.16	8-95	9.09
vespertilin (1c) ^b		m[10]	m[25]	S	8	s
Diacetate (1d)		4.58	5-25	8.20	8.96	9.14
		m[10]	m[25]	8	s	S
5-Dihydro-17,20-dehydro-			5.25	8.15	9.17	9.20
vespertilin acetate (5)			m[25]	8	S	S
5-Dihydro-20,21-dehydro-	3.62 m[4]		5.25		9.17	9.17
vespertilin acetate (6)	4 38 m[4]		m[25]		S	s

Table 1. Chemical shifts in CDCl₃ (60 MHz, τ -scale)^{*u*}

^aCoupling constants J in parentheses, $W_{1/2}$ in brackets (both in Hz). ^bIn d₅-pyridine.

In order to determine the structure by chemical methods tigogenin was treated with Ac₂O and MeNH₂·HCl obtaining pseudotigogenin acetate (3b). Subsequent saponification and reaction of the resulting compound 3a with m-chloroperbenzoic acid afforded the less hindered 20,22 α -epoxide which in situ undergoes acid-catalysed opening followed by recyclization of ring F to give 20Shydroxytigogenin (4a),⁴ in the NMR spectrum of which the Me- C_{20} appears as a singlet at 8.61, Oxidation of the acetate 4b with conc HNO₃ yielded the γ -lactone 2a, C₂₄H₃₆O₅, which in the IR exhibits bands at 1780 and 1750 cm⁻¹. That 2a possesses an OH group at position 20 was proved by treating it with SOCl₂, obtaining the expected dehydration compounds 5 and 6 of empirical formula C24H34O4. The NMR spectrum of the former shows a singlet at 8.15 (Me- C_{20}) which is not present in that of the latter, appearing instead as two multiplets at 3.62 and 4.38 (= CH_2). In the IR both 5 and 6 show an α,β -unsaturated γ -lactone band (1770 and 1760 cm⁻¹ respectively) and lack OH absorptions. Strong acetylation of 2a afforded 2b, the physical and spectroscopic data of which are identical with those of the hydrogenation product of 20S-hydroxyvespertilin acetate (1d). Hence, 1c is assigned the structure of (20S)-3 β , 16 β , 20-trihydroxy-pregn-5-en-20-carboxylic acid (22, 16)-lactone.

Recently, Gashchenko *et al*⁵ during the conversion of diosgenin into 16-dehydropregnenolone obtained a by-product whose physical and spectral data are identical to those of our natural compound 1c and for which they propose the structure of (20R)-3 β ,16 β ,20-trihydroxy-pregn-5-en-20-carboxylic acid (22,16)-lactone. The reasons why they give the stereochemistry of C₂₀ as R, instead of S as shown above, are as follows: first, by reduction of the lactone CO with LAH they obtain a diol (7), the *cis* configuration of which they prove by

the fact that it forms an acetonide. Second, they affirm that the said diol has β configuration because attack of the reduction reagent must take place from the α side of the molecule. However, it is well known⁶ that the reduction mechanism of α -hydroxycarbonyls with LAH cannot be explained by directly applying the rule of asymmetric induction, but that one must consider the steric hindrance caused by the formation of a salt, which in our case would correspond to formula 8 and the reduction of which would give a *cis*-diol no matter the stereochemistry at C₂₀. Therefore, the reasons exposed by Gashchenko *et al*⁵ are not valid for determining the stereochemistry at C₂₀.

EXPERIMENTAL

M.ps determined on a Kofler block are uncorrected. Optical rotations were measured on a Perkin-Elmer 141 polarimeter in CHCl₃ unless otherwise stated and IR spectra on a Perkin-Elmer 237 spectrometer. NMR spectra were taken with a Perkin-Elmer R-10 instrument (60 MHz) using TMS as internal reference and mass spectra with a Hitachi Perkin-Elmer RMU-7. The chromatographic adsorbents were Merck products. Column chromatography was performed on silica gel 0.2-0.5 mm and dry column chromatography on silica gel 0.063-0.2 mm, the spray reagent for TLC being H.SO1--HOAC--H.O (4:80:16). Recrystallization solvent was MeOH unless otherwise indicated. Light petroleum refers to fractions of b.p. 40-60°.

Isolation of the steroids. The air-dried stems and leaves of Solanum vespertilio (32 kg) collected near San Andrés (Tenerife) were finely cut and extracted with EtOH in a soxhlet. After filtering the cold ethanolic extract it was concentrated in vacuo, diluted with an equal volume of water and degreased with benzene in a liquid-liquid extractor. Then conc HCl was added till it was 2N. After refluxing for 3 hr it was poured into water, neutralized with NaHCO3 and filtered. The ppt was extracted several times with boiling CHCl₃. Evaporation of the solvent afforded the crude mixture of steroids (320 g) which was chromatographed on a column. Elution with benzene-EtOAc (9:1) gave a mixture of β -sitosterol and diosgenin, separated by dry column chromatography. With benzene-EtOAc (85:15) a mixture of 16-dehydropregnenolone and vespertilin (1a) was obtained which was separated on a dry column. Benzene-EtOAc (7:3) eluted a mixture of 1c, $\Delta^{3.5}$ -solasodine and an unknown steroid, being investigated, which was acetylated and separated by preparative TLC (benzene-EtOAc 95:5). Finally, with benzene-EtOAc (1:1) a mixture of solasodine and tomatidenol was obtained which was separated on a dry column.

 β -Sitosterol (0.5 g), m.p. 134-137°, $[\alpha]_D - 34^\circ$ (c, 0.16). Identified with an authentic sample (TLC, IR spectrum superimposable).

Diosgenin (5 g), m.p. 203-205°, $[\alpha]_D - 117°$ (c, 0.17). Identified with an authentic sample (TLC, IR spectrum superimposable).

16-Dehydropregnenolone (0.5 g), m.p. 210.5-212°, $[\alpha]_{\rm D}-31^{\circ}$ (c, 0.15). Identified with an authentic sample (TLC, IR spectrum superimposable).

Vespertilin 1a (0.8g), m.p. 223.5-225° (EtOAc-light petroleum), $[\alpha]_D - 98^\circ$ (c, 0.18). Identified with an authentic sample isolated from the fruits of the same plant

(m.m.p., TLC, IR, NMR spectra superimposable).²

Solasodine (30 g), m.p. 202–204°, $[\alpha]_D - 107^\circ$ (c, 0.30). (Found: C, 78·20; H, 10·36; N, 3·29. Calc. for C₂₇H₄₃O₂N: C, 78·40; H, 10·48; N, 3·39%); IR and NMR data identical with those given in ^{7.8}.

Tomatidenol (0.5 g), m.p. 235–239°, $[\alpha]_D - 45^\circ$ (c, 0.18). (Found: C, 78·37; H, 10·29; N, 3·19. Calc. for C₂₇H₄₅O₂N: C, 78·40; H, 10·48; N, 3·39%); NMR data identical with those given.⁸

 $\Delta^{3.5}$ -Solasodine (0.1 g), m.p. 176–178°, $[\alpha]_D - 180°$ (c, 0.19). (Found: C, 81.26; H, 10.58; N, 3.74. Calc. for C₂₇H₄₁ON: C, 81.97; H, 10.45; N, 3.54%); IR and NMR data identical with those given in ⁹.

20S-Hydroxyvespertilin 1c (50 mg), m.p. $308-310^{\circ}$, $[\alpha]_{D} - 64^{\circ}(c, 0.13; pyridine) [lit.⁵ m.p. <math>309-310^{\circ}$, $[\alpha]_{D} - 68^{\circ}$ (pyridine)]. (Found: C, 73·33; H, 8·94. C₂₂H₃₂O₄ requires: C, 73·30; H, 8·95%); ν_{max}^{RBr} 3380 (OH), 3030, 2830, 840 (Δ°), 1780, 1750 cm⁻¹ (γ -lactone). NMR: see Table 1; MS: *m/e* (%) 360 (M⁺; 27), 342 (M⁺-H₂O; 42), 327 (38), 301 (20), 275 (35). Diacetate 1d, prepared with Ac₂O in pyridine at room temp for 3 days or at 100° for 1 hr. M.p. 244-246°, $[\alpha]_{D} - 91^{\circ}$ (c, 0·20). (Found: C, 69·96; H, 7·95. C₂₈H₃₆O₆ requires: C, 70·24; H, 8·16%); ν_{max}^{BBr} 3030, 2830, 830 (Δ°), 1780, 1750 (γ -lactone), 1730, 1260 cm⁻¹ (OAc); NMR: see Table 1.

Pseudotigogenin acetate 3b. A soln of tigogenin (4g) in pyridine (12 ml) containing Ac_2O (8 ml) and $MeNH_2$. HCl (1.4g) was refluxed for 3½ hr. After adding water the soln was extracted with CHCl₃, washed with NaHCO₃ aq and water and the solvent evaporated *in vacuo*. Dry column chromatography of the residue (benzene-EtOAc 97:3) afforded 3b, m.p. 65-70° (lit.¹⁰ 68-70°).

Pseudotigogenin **3a. 3b** was saponified with 2% KOH in MeOH at room temp for 12 hr. Usual work-up gave **3a** (2 g) which was unstable and therefore used without further purification.

20S-Hydroxytigogenin 4a. To a soln of 3a (2g) in CH_2Cl_2 (150 ml) *m*-chloroperbenzoic acid (3.5 g) was added and the mixture kept at room temp in the dark for 15 hr. It was washed with NaHSO₃ aq, NaHCO₃ aq and water and concentrated. Dry column chromatography of the residue (benzene-EtOAc 1:1) gave 4a (0.9g), m.p. 219-221°, $[\alpha]_{\rm p} = 61^{\circ}(c, 0.18)$. (Found: C, 74.67; H, 10.43. Calc. for $C_{27}H_{44}O_4$: C, 74.96; H, 10.25%); $\nu_{\text{HR}^{16}}^{\text{HR}^{16}}$ 3610 (OH), 985, 960, 920, 900, 860 cm⁻¹ (25*R*-spiroketal); NMR (CDCl₃): 8.61 (3H, s, Me-C₂₀), 9.06 (3H, s, Me--C₁₃), 9.18 (3H, s, Me--C₁₀), 9.21 (3H, d, J 6 Hz, Me-C₂₅). 3-Acetate 4b, prepared as usual, m.p. 235-238°, $[\alpha]_D = 66^\circ$ (c, 0.19) (lit.⁴ m.p. 234–236°, $[\alpha]_D = 71^\circ$). (Found: C, 73.13; H, 9.92. Calc. for C29H46O5: C, 73.38; H, 9-77%); $\nu_{max}^{CHCl_{a}}$ 3500 (OH), 1730, 1260 cm⁻¹ (OAc); NMR (CDCl_{a}): 7.96 (3H, s, OAc), 8.61 (3H, s, Me-C₂₀), 9.05 (3H, s, Me-C₁₃), 9.16 (3H, s, Me-C₁₀), 9.21 (3H, d, J 6 Hz, Me-C₂₅).

5-Dihydro-20S-hydroxyvespertilin diacetate (2b) from 4b. To a soln of 4b (250 mg) in CHCl₂ (3 ml) and ether (12 ml) conc HNO₃ (5.5 ml) was added slowly during 1 hr and the reaction kept at room temp for 3 hr. Usual workup gave a residue which chromatographed on a dry column (benzene-EtOAc 85:15) yielded 2a (140 mg), m.p. 282-284°, $[\alpha] - 54^{\circ}$ (c, 0.27). (Found: C, 70-90; H, 9·22. C₂₄H₃₆O₅ requires: C, 71·26; H, 8·97%); ν_{max}^{EKI3} 3580 (OH), 1780, 1750 (y-lactone), 1740, 1260 cm⁻¹ (OAc); NMR (CDCl₃): 7·97 (3H, s, OAc), 8·41 (3H, s, Me-C₂₀), 9·17 (3H, s, Me-C₁₀), 9·20 (3H, s, Me-C₁₃). Diacetate 2b, by refluxing 2a with Ac₂O in pyridine for $\frac{1}{2}$ hr, m.p. 261-262°, $[\alpha]_p - 26^{\circ}$ (c, 0·17). (Found: C, 69·98; H, 8-80. $C_{28}H_{38}O_6$ requires: C, 69·93; H, 8·58%); ν_{max}^{CHCls} 1780, 1750 (y-lactone), 1730, 1260 cm⁻¹ (OAc). NMR (CDCl₀): 7·95 (6H, s, OAc), 8·21 (3H, s, Me—C₂₀), 9·17 (3H, s, Me—C₁₀), 9·20 (3H, s, Me—C₁₃).

Compound 2b from 1d. A soln of 1d (9 mg) in glacial HOAc (3 ml) was hydrogenated over 10% Pd/C (15 mg) at room temp and atm press for 6 hr. After filtering and usual work-up the residue was chromatographed on a dry column (benzene-EtOAc 95:5) affording 2b which was shown to be identical with the synthetic material obtained above (m.m.p., TLC, IR, NMR spectra superimposable).

5-Dihydro-17,20-dehydrovespertilin (5) and 5-dihydro-20,21-dehydrovespertilin (6) acetates. To a soln of 2a (60 mg) in pyridine (1 ml) SOCl₂ (3 drops) was added and the mixture stirred at room temp for 1 hr. After usual work-up preparative TLC (benzene-EtOAc 97:3) of the residue gave 5 (19 mg) and 6 (30 mg). 5, m.p. 228-230°, $[\alpha]_D - 43°$ (c, 0·16). (Found: C, 74·37; H, 8·91. C₂₄H₃₄O₄ requires: C, 74·58; H, 8·87%); $\nu_{max}^{\rm HCIs}$ 1770 (α,β -unsaturated γ -lactone), 1730, 1260 cm⁻¹ (OAc); NMR: see Table 1. 6, m.p. 225-227°, $[\alpha]_D - 96°$ (c, 0·13). (Found: C, 74·26; H, 8·98. C₂₄H₃₄O₄ requires: C, 74·58; H, 8·87%); $\nu_{max}^{\rm CHCIs}$ 1760 (α,β -unsaturated γ -lactone), 1730, 1260 cm⁻¹ (OAc); NMR: see Table 1.

Acknowledgement-We are indebted to Dr. C. Pascual (Universität Basel) for the mass spectrum. One of us

(C.G.F.) thanks the Ministerio de Educación y Ciencia for a fellowship "Formación de Personal Investigador". This work was realized within the Programme 1971 conceded by the Foundation Juan March.

REFERENCES

¹Part XVIII, A. G. González, R. Freire, R. Hernández, J. A. Salazar and E. Suárez, *Rev. Latinoam. Quím.* in press

²A. G. González, C. Garcia Francisco, R. Freire Barreira and E. Suárez López, An. Quím. 67, 433 (1971) ³R. F. Zürcher, Helv. Chim. Acta 44, 1380 (1961)

4M. E. Wall and H. A. Walens, J. Am. Chem. Soc. 80, 1984 (1958)

⁵L. G. Gashchenko, V. I. Maksimov and L. M. Alekseeva, *Khim. Farm. Zh.* 5, 20 (1971); *Chem. Abstr.* 75, 64088 r (1971)

⁶H. O. House, *Modern Synthetic Reactions* p. 29. Benjamin New York (1965) and refs cited

⁷F. C. Uhle, J. Am. Chem. Soc. 83, 1460 (1961). L. H. Briggs, L. D. Colebrook, H. K. Miller and Y. Sato, J. Chem. Soc. 3417 (1960)

⁸P. M. Boll and W. von Philipsborn, Acta Chem. Scand. 19, 1365 (1965)

⁹L. H. Briggs and T. O'Shea, J. Chem. Soc. 1654 (1952)

¹⁰A. F. B. Cameron, R. M. Evans, J. C. Hamlet, J. S. Hunt, P. G. Jones and A. G. Long, *Ibid*. 2807 (1955)