Synthesis of 2'-Deoxytubercidin {4-Amino-7-(2-deoxy- β -D-erythro-pentofuranosyl)pyrrolo[2,3-d]pyrimidine} from the Parent Antibiotic

By MORRIS J. ROBINS* and WOLFGANG H. MUHS

(Department of Chemistry, The University of Alberta, Edmonton, Alberta, Canada T6G 2G2)

Summary Desulphurisation of 4-amino-7-(2-S-benzyl-2thio-2-deoxy- β -D-arabinofuranosyl)pyrrolo[2,3-d]pyrimidine (7), obtained by intramolecular episulphonium ion rearrangement of the isomeric 3'-S-benzyl-thio-xylo-2'-Omethylsulphonyl derivative (5) [obtained in three steps from 2',3'-anhydrotubercidin (1)] using sodium benzoate in NN-dimethylformamide, gave the elusive 2'-deoxytubercidin (8).

TUBERCIDIN $(4-amino-7-\beta-D-ribofuranosylpyrrolo[2,3-d]$ pyrimidine) was discovered in 1957 and its synthesis was reported¹ in 1968. A comprehensive review² of chemical base modifications, biochemical and biological studies, and clinical applications is available.

Ribonucleotide reductase from bacterial sources was reported to effect deoxygenation of tubercidin on a micro scale,³ and deoxynucleotides of tubercidin have been detected in enzymic digests of DNA from radioactive tracer feeding experiments.³ However, although 2'-deoxytubercidin has been a synthetic target of significant biochemical and biological interest for over ten years, no chemical or enzymatic preparation on a scale allowing characterisation or investigation has appeared. Attempted nucleophilic displacement of arylsulphonates at C(2') led to sulphur-oxygen cleavage or else resulted in decomposition to intractable materials. Halide attack on 2',3'-O-acyloxonium species which gave 10-15% of C(2')-substitution in the corresponding adenosine intermediates^{4,5} produced exclusive C(3')-substitution with tubercidin.^{4,6,7} A synthesis of 2'deoxytubercidin (8) from the parent antibiotic is now outlined employing intramolecular migration of S-benzyl from C(3') to C(2') via episulphonium ion rearrangement as the key step.

Benzovlation of 2',3'-anhydrotubercidin^{4,7} (1) (obtained in 96% overall yield from tubercidin) gave the N(4)N(4)-O(5')-tribenzoyl derivative[†] (2), m.p. 201-202 °C, quantitatively. This soluble and stabilised [against $N(1) \rightarrow C(3')$ intramolecular cyclisation] product was treated with sodium benzylthiolate in hot tetrahydrofuran to give (3), \dagger m.p. 142—144 °C, in 68% yield plus 22% of its O(5')-deblocked derivative[†] (4), m.p. 121—124 °C. No product of C(2')attack was detected. Mesylation in the usual manner gave a quantitative yield of the 2'-mesylate (5), $v 1170 \text{ cm}^{-1}$ (OSO₂R), δ 3·15 (3H, s, OSO₂Me), m/e 562·16710 [calc. for $C_{32}H_{26}N_4O_4S$ (M⁺ - HOSO₂Me): 562·16757]. Treatment of this amorphous glass with sodium benzoate in hot NNdimethylformamide (DMF) and deblocking with methanolic

sodium methoxide gave (6),† m.p. 98-101 °C, and its 2'-S-benzylthioarabino isomer (7),† m.p. 146-148 °C, in 90% combined yield from (3) and in a ratio of 2:3, respectively. The ratio and formation of (7) are compatible⁸ with benzoate attack on a 2',3'-lyxo-thiiranium intermediate.

Desulphurisation[‡] of (7) gave 2'-deoxytubercidin (8) (77%), m.p. 217–218 °C; $[\alpha]_{\rm D}^{24}$ – 43° (c 0.58, EtOH); λ (0.1 N HCl) (max) 272 (e 12,800) and 227 (26,500) nm, (min) 245 (ϵ 3900) nm; λ (0·1 N NaOH) (max) 270 (ϵ 13,500) nm, (min) 240 (ϵ 3200) nm; δ [(CD₃)₂SO, rel. to Me₄Si] 2.14 (1H, octet, $J_{2'a,2'b}$ 13.5 Hz, H-2'b), 2.5 (m, Me₂SO and H-2'a), 3.53 (2H, 't', H-5'a and H-5'b), 3.82 (1H, m, H-4'), 4.34 (1H, m, $J_{3',2'a}$ 5.5, $J_{3',2'b}$ 3 Hz, H-3'), 5.10 (1H, t, $J_{OH,5'a,5'b}$ 5 Hz, OH-5'), 5.20 (1H, d, $J_{OH_3'}$ 4 Hz, OH-3'), 6.49 (1H, d of d, $J_{1',2'a}$ 8, $J_{1',2'b}$ 6 Hz, H-1'), 6.58 (1H, d, $J_{5,6}$ 4 Hz, H-5), 7.0 (2H, s br, NH₂-4), 7.35 (1H, d, $J_{6,5}$ 4 Hz, H-6), 8.07 (1H, s, H-2); m/e (70 eV, 180 °C, direct probe) (% R.I., peak) 250.1073 [6.5, M^+ (calc. 250.1066)], 220 (2.4, M^+ - OH₂C), 161 (23.8, BHCH=CH₂), 135 (15, B+2H), 134 (100, B+H) (B = pyrrolopyrimidine base).

Analogous desulphurisation⁺ of (6) gave 3'-deoxytubercidin.^{4,6,7} The overall yield of (8) in eight stages from the parent antibiotic is 27% in addition to an equivalent quantity of the 3'-deoxy isomer.

We acknowledge generous support from the National Cancer Institute of Canada, the National Research Council of Canada, and The University of Alberta.

(Received, 26th January 1976; Com. 077.)

† Elemental analyses and u.v., ¹H n.m.r., and high resolution mass spectra are compatible with these structures.

- ‡ Raney Nickel (W. R. Grace & Co. No. 28) in DMF at 100 °C.
- R. L. Tolman, R. K. Robins, and L. B. Townsend, J. Amer. Chem. Soc., 1968, 90, 524; *ibid.*, 1969, 91, 2102.
 R. J. Suhadolnik, 'Nucleoside Antibiotics,' Wiley-Interscience, New York, 1970, ch. 8.
- ³ See ref. 2, pp. 336, 338, 340, 345, and 346.

- ⁴ M. J. Robins, R. Mengel, and R. A. Jones, J. Amer. Chem. Soc., 1973, 95, 4074.
 ⁵ A. F. Russell, S. Greenberg, and J. G. Moffatt, J. Amer. Chem. Soc., 1973, 95, 4025.
 ⁶ M. J. Robins, J. R. McCarthy, Jr., R. A. Jones, and R. Mengel, Canad. J. Chem., 1973, 51, 1313.
 ⁷ T. C. Jain, A. F. Russell, and J. G. Moffatt, J. Org. Chem., 1973, 38, 3179.
 ⁸ C. D. Anderson, L. Goodman, and B. R. Baker, J. Amer. Chem. Soc., 1959, 81, 3967.