265. Mechanismus der photochemischen Methanol-Addition an 2-allylierte Aniline¹)

von Synèse Jolidon und Hans-Jürgen Hansen

Institut de chimie organique de l'Université, Pérolles, CH-1705 Fribourg

Herrn Prof. Dr. Dr. h.c. Edgardo Giovannini zugeeignet

(10.VIII.79)

Mechanism of the Photochemical Addition of Methanol to 2-Allylated Anilines

Summary

We studied in methanol the photoreaction of the 2-allylated anilines, given in Scheme 3 (cf. also [1]). Irradiation of N-methyl-2-(1'-methylallyl)aniline (15) with a high pressure mercury lamp yielded *trans*- and *cis*-1,2,3-trimethylindoline (*trans*and cis-34) as well as erythro- and threo-2-(2'-methoxy-1'-methylpropyl)-N-methylaniline (erythro- and threo-35; Scheme 7). When the corresponding aniline d_{3} -15, specifically deuterated in the l'-methyl group, was irradiated in methanol, a mixture of trans- and cis-d₃-34, and of erythro- and threo-d₃-35 was obtained. Successive dehydrogenation of the mixture of cis/trans-d₃-34 by Pd/C in boiling xylene and by MnO₂ in boiling benzene lead to the corresponding indole d_3 -36 (cf. Scheme 9), the ¹H- and ²H-NMR. spectra of which showed that both cis-d₃- and *trans*- d_3 -34 had bound the deuterium labeled methyl group exclusively at C(3). The ¹H- and ²H-NMR, analyses of the separated methanol addition products revealed that erythro-d₃-35 contained the deuterium label to at least 95% in the methyl group at C(1'), and threo-d₃-35 to 50% in CH₃-C(1') and to 50% in $CH_3-C(2')$ (cf. Scheme 9). To confirm these results 2-(1'-ethylallyl)aniline (16) was irradiated in methanol, whereby a complex mixture of at least 6 products was obtained (cf. Scheme 11). Two products were identified as trans- and cis-3-ethyl-2-methylindoline (trans- and cis-37). The four other products represented erythroand threo-2-(1'-ethyl-2'-methoxypropyl)aniline (erythro- and threo-39) as major components, and erythro- and threo-2-(2'-methoxy-1'-methylbutyl)aniline (erythroand threo-40). These results clearly demonstrate that the methanol addition products must arise from spirodienimine intermediates of the type of trans-9 and cis-11 ($R^1 = CD_3$ or C_2H_5 , $R^2 = CH_3$ or H; Scheme 2) which are opened solvolytically with inversion of configuration by methanol. Thus, cis-11 ($R^1 = CD_3$, $R^2 = CH_3$) must lead to a 1:1 mixture of threo-13 and threo-14 (i.e. a 1:1 distribution of the deuterium labelled methyl group between C(1') and C(2') in threo-35).

¹) Gilt als 2. Mitteilung über Reaktionen elektronisch angeregter Allylbenzol-Derivate; 1. Mitt.: s. [1].

The formation of *erythro*-d₃-35 with at least 95% of the deuterium label in the methyl group at C(1') indicates that *trans*-9 ($R^1 = CD_3$, $R^2 = CH_3$) reacts with methanol regioselectively (>95%) at the C(2), C(3) bond. Similarly, the formation of the methanol addition products in the photoreaction of 16 (*Scheme 11*) can be explained. Since the indolines, formed in both photoreactions, show no alteration in the position of the substituent at C(1') with respect to the starting material we suppose that the diradical 7 ($R^1 = CD_3$ or C_2H_5 , $R^2 = CH_3$ or H; *Scheme 2*) is a common intermediate which undergoes competetive 1.3 and 1.5 ring closure yielding the spirodienimines and the indolines.

This conception is supported by irradiation experiments with N, 3, 5-trimethyl-2-(1'-methylallyl)aniline (17) and 2-(2'-cyclohexenyl)-N-methylaniline (18) in methanol. In the former case the formation of spirodienimines is hindered by the methyl group at C(3) for steric reasons, thus leading to a ratio of the indoline to the methoxy compounds of about 6.3 as compared with *ca.* 1.0 for 15 (*cf. Scheme 12*). On the other hand, no methoxy compounds could be detected in the reaction mixture of 18 (*cf. Scheme 13*) which indicates that in this case the 1.3 ring closure cannot compete with the 1.5 cyclization in the corresponding cyclic diradical of the type 7 (\mathbb{R}^1 -C(1')-C(2') is part of a six-membered ring; *Scheme 2*).

We suppose that the diradicals of type 7 are formed by proton transfer in an intramolecular electron-donor-acceptor (EDA) complex arising from the excited singlet state of the aniline chromophor and the allylic side chain. This idea is supported by the fluorescence spectra of 2-allylated N-methylanilines (cf. Fig. 1-4) which show pronounced differences with respect to the corresponding 2-alkylated anilines. Furthermore, the anilines 18 and 20 when irradiated in methanol in the presence of an excess of *trans*-1, 3-pentadiene undergo preferentially an intermolecular addition to the diene, thus yielding the N-(1'-methyl-2'-butenyl)anilines 52 and 51, respectively (Scheme 15), *i.e.* as one would expect the diene with its low lying LUMO is a better partner for an EDA complex than the double bond of the allylic side chain.

1. Einleitung. – 2-Allylaniline ergeben, wie wir unlängst mitteilten [1], bei der Bestrahlung mit einer Quecksilber-Hochdrucklampe in Methanol neben Indolinen, die – ausser geringen Anteilen an Tetrahydrochinolinen – als einzige Produkte bei der Bestrahlung in unpolaren Lösungsmitteln wie Benzol oder Cyclohexan auftreten [1] [2], in regioselektiver Weise Methanoladditionsprodukte an die Doppelbindung der Allylgruppe (vgl. Schema 1: $1 \rightarrow 2+3$). Für die Bildung der Additionsprodukte (z. B. 3) machten wir das transitorische Auftreten von Spiro[2.5]octa-4,6-dien-8-iminen (z. B. 5) verantwortlich, die – aus einem intramolekularen Singulett-Elektronen-Donor-Acceptor (EDA)-Komplex zwischen dem angeregten Anilinchromophor und der Doppelbindung der Allylkette durch Protonenübertragung und Cyclisierung des dabei gebildeten Diradikals (z. B. 4) hervorgehend²) – im elektronischen Grundzustand in einer Art Methanolyse unter Öffnung der C(1), C(3)-Bindung in die Additionsprodukte übergehen. Die Annahme des inter-

²) Vgl. hierzu auch Schema 11 in [1].

a) Es wird nur der Ringschluss von einem Enantiomeren betrachtet.

mediären Auftretens von Spirodieniminen des Typs 5 stützten wir durch Überlegungen allgemeiner Art ab, unter anderem damit, dass energetisch betrachtet 2-Allylaniline wegen des relativ niedrigen Oxydationspotentials von Anilinen (z. B. +0,76 V für N, N-Diäthylanilin in Acetonitril [3]) in ihrem S_1 -Zustand intramolekulare EDA-Komplexe bilden können sollten. Durch Protonenübertragung in diesen EDA-Komplexen können phenylaminyl-artige 1,5-Diradikale vom Typ 4 entstehen, deren Tendenz zum 1,3-Ringschluss von anderen Reaktionen her gut bekannt ist³). Eindeutige experimentelle Befunde, die nur mit der Bildung von Spirodieniminen zu vereinbaren gewesen wären, fehlten jedoch, da die Spiro-

³) Vgl. z.B. die schon früher von uns beschriebene photochemische Umlagerung von 3-Methyl-2-phenylcumaranen in 2-Methyl-3-phenylcumarane [4].

körper des Typs 5 in Gegenwart von Methanol offenbar ausschliesslich unter Beteiligung des die Methylgruppe tragenden C(1)-Atoms geöffnet werden. Damit wird aber jene Bindung wieder gespalten, die sich in den Zwischenprodukten gemäss Schema 1 ausbildet, d.h. in den Methanoladdukten bleibt die ursprüngliche Sequenz der C-Atome des Allylrestes der 2-Allylaniline gewahrt, wodurch ein direkter struktureller Nachweis des Auftretens der Spirodienimine des Typs 5 nicht möglich ist.

Diese Gegebenheit sollte sich jedoch ändern, wenn in die 1'-Stellung der Allylkette der 2-Allylaniline ein Alkylrest (R¹) eingeführt wird. In diesem Falle muss - wie Schema 2 verdeutlicht - mit der Bildung von mindestens zwei diastereomeren Spirodieniminen, nämlich trans-9 und cis-11 gerechnet werden, falls die in den entsprechenden diastereomeren EDA-Komplexen durch die intramolekulare Wasserstoffbrücke vorgegebene Konformation nach der Protonenübertragung im 1,5-Diradikal 7 erhalten bleibt, d.h. der 1,3-Ringschluss erfolgt, bevor durch Rotation um die C(1'), C(2')-Bindung die diastereotopen Seiten in 7 ausgetauscht werden. Anderenfalls muss auch noch mit der Bildung der beiden Spirodienimine trans-10 und cis-12 gerechnet werden⁴). Die Reaktion der Spirodienimine mit Methanol sollte bei Öffnung der C(2), C(3)-Bindung zu erythround threo-13, bei Öffnung der C(1), C(3)-Bindung aber auch zu erythro- und threo-14 führen⁵)⁶). Letztere Produkte besitzen demnach eine umgelagerte Alkylseitenkette, die aus dem durch die Intervention der Spirodienimine bewirkten Platzwe chsel von C(1') und C(2') hervorgeht⁷). Besonders interessant ist dabei der Fall, bei welchem $R^1 = CH_3$ ist, denn hier stellen die Spirodienimine *cis*-11 und cis-12 meso-Verbindungen dar, d.h. die Öffnung ihrer C(2), C(3)- und C(1), C(3)-Bindung mit Methanol muss mit gleicher Wahrscheinlichkeit eintreten. Die Methanoladdukte threo-13 und -14 stellen dann zwar enantiomere Formen dar, die sich aber z.B. durch Isotopenmarkierung in den Methylgruppen unterscheiden lassen.

Aus diesem Grunde haben wir das photochemische Verhalten von *N*-Methyl-2-(l'-methylallyl)anilin ($15 \equiv 6$ mit $R^1 = R^2 = CH_3$), seinem Trideuteriomethyl-isomeren d₃-15 ($\equiv 6$ mit $R^1 = CD_3$, $R^2 = CH_3$) und 2-(l'-Äthylallyl)anilin ($16 \equiv 6$ mit $R^1 = C_2H_5$, $R^2 = H$) in Methanol untersucht (vgl. Schema 3). Die letztgenannte Verbindung sollte bei der Bildung der Spirodienimine cis-11 und -12 ($R^1 = C_2H_5$, $R^2 = H$) eine unterschiedliche Reaktivität der C(1), C(3)- und C(2), C(3)-Bindung bei der Methanoladdition erkennen lassen.

⁴) Ausser acht gelassen wird hier die Tatsache, dass die Imingruppierung in 9-12 prinzipiell auch noch in der (*E*)- und/oder (*Z*)-Konfiguration vorliegen kann.

⁵) Erythro- und threo-konfiguriert werden hier und im folgenden jene Diastereoisomeren genannt, die in der Fischer-Projektion die Alkylreste (CH₃ und R¹) und die Wasserstoffatome an C(1') und C(2') auf den gleichen bzw. auf den entgegengesetzten Seiten der Projektion der C(1'), C(2')-Bindung tragen.

⁶) Es wird vorausgesetzt, dass die Reaktion der Spirodienimine mit Methanol unter Inversion der Konfiguration an C(1) bzw. C(2) erfolgt, wie es bei Solvolysen unter 1,2-Phenylgruppenbeteiligung bisher stets beobachtet wurde (vgl. z. B. [5] und Diskussion).

⁷⁾ Die Reaktionen der Spirodienimine mit Methanol zu 13 und 14 erlauben es nicht, zu entscheiden, ob transitorisch nur die Spirodienimine *trans-9* und *cis-11* auftreten oder diese noch von *trans-10* und *cis-12* begleitet werden (siehe später).

^a) NH₃/NaNH₂, -33° ; CD₃I. ^b) 50proz. wässerige CH₃COOH-Lösung, 30 Min. kochen unter Rückfluss.

Um auch den Einfluss von sterischen Faktoren auf die Spirodienimin-Bindung beurteilen zu können, haben wir noch die Photoreaktion von N, 3, 5-Trimethyl-2-(1'-methylallyl)anilin (17)⁸) und 2-(2'-Cyclohexenyl)-N-methylanilin (18)⁹) sowie – zu Vergleichszwecken – diejenige der Aniline 19 und 20 (Schema 3) in Methanol untersucht.

Die Synthese der 2-allylierten Aniline erfolgte durch die schwefelsäurekatalysierte, thermische Umlagerung entsprechender *N*-allylierter Vorläufer [7]. Nachträgliche Methylierung der *N*-Trifluoracetylderivate der intermediären, 2-allylierten Aniline **21-23** sowie des 2-(2'-Butenyl)anilins [7] ergab **15**, **17**, **18** bzw. **20**¹⁰).

Für die Herstellung der Trideuteriomethylverbindung d_3 -15 diente *N*-(2'-Propinyl)-*N*-tritylanilin (24) als Ausgangsmaterial, das mit Trideuteriomethyljodid in flüssigem Ammoniak in Gegenwart von Natriumamid alkyliert wurde (*Schema 4*). Beim Kochen mit Essigsäure wurde die Schutzgruppe abgespalten und direkt *N*-(4',4',4'-Trideuterio-2'-butinyl)anilin (d_3 -25) erhalten, das wie schon früher für die Protioverbindung 25 beschrieben [7] weiter umgesetzt wurde.

Schwierigkeiten bereitete die säurekatalysierte Umlagerung von N-(2'-Butenyl)-3,5-dimethylanilin (26), da sich das primär gebildete 3,5-Dimethyl-2-(1'-methylallyl)anilin (22) in einer säurekatalysierten, [3.3]-sigmatropischen Folgereaktion in das thermodynamisch stabilere 4-(2'-Butenyl)-3,5-dimethylanilin (27) umlagerte (Schema 5)¹¹). Nur bei einem Umsatz von etwa 50% und möglichst niedriger Umlagerungstemperatur (ca. 100°) liess sich 22 als Hauptprodukt erhalten. Es wurde aus dem Reaktionsgemisch durch Chromatographie an Kieselgel isoliert.

⁸⁾ Bei der bei etwa 200° erfolgenden abnormalen *Claisen*-Umlagerung von 2-(1'-Methylallyl)phenolen, bei der mit *trans*-9 und *cis*-11 vergleichbare Spirodienone (R¹= CH₃, R²N = O) auftreten, erschweren Methylgruppen in Stellung 3 und 5 die Ausbildung von *cis*-Spirodienonen [6].

⁹) Die Überbrückung von C(1') und C(3') in 18 sollte nur die Ausbildung der *cis*-Spirodienimine vom Typ 11 und 12 (Schema 2) zulassen.

¹⁰) Dieses Vorgehen erwies sich aufgrund unserer Erfahrungen [7] zweckmässiger als die säurekatalysierte Umlagerung der entsprechenden N-Allyl-N-methylaniline, die stets auch zu beträchtlichen Anteilen der jeweiligen Indoline führte.

¹¹) Eine entsprechende, rein thermische Umlagerung dieser Art in N, N-Diäthylanilin zeigen auch 3,5-Dimethyl-2-(1'-methylallyl)phenol und verwandte Verbindungen [8].

- a) $0.5 \times H_2SO_4$ (aq.), 53stdg. Kochen unter Rückfluss; es bildeten sich noch 7% 3,5-Dimethylanilin.
- b) Kochen unter Rückfluss in 0,5N H₂SO₄ (aq.).

a) 0,2N H₂SO₄ (aq.), 7stdg. Kochen unter Rückfluss; daneben bildeten sich noch 11% Anilin.

Auch bei der säurekatalysierten Umlagerung von N-(1'-Methyl-2'-butenyl)anilin (28) in siedender 0,2N H₂SO₄ (aq.) trat neben dem erwarteten 2-allylierten Produkt 19 noch das entsprechende 4-allylierte Isomere 29 auf *(Schema 6).* Da unter den Umlagerungsbedingungen keine Umwandlung von 19 in 29 festgestellt wurde, ist anzunehmen, dass 29 direkt aus 28 – möglicherweise über einen intermolekularen Mechanismus¹²)- gebildet wird (vgl. [9] [10]).

2. Bestrahlungen der 2-allylierten Aniline. – 2.1. Elektronenspektren der Aniline. Die in Schema 3 angegebenen 2-allylierten N-Methylaniline 15, 17, 18 und 20 zeichnen sich in ihren Absorptionsspektren in Methanol durch zwei Maxima im Bereich von 292-296 nm ($\varepsilon \approx 2500$) und 243-249 nm ($\varepsilon \approx 9000$) aus, die bei den beiden nicht N-methylierten Anilinen 16 und 19 erwartungsgemäss leicht hypsochrom verschoben erscheinen (vgl. exper. Teil). Die Struktur der Allylseitenkette übt dabei keinen Einfluss auf die Lage der Absorptionsbanden aus¹³). Eine elektronische Wechselwirkung zwischen dem Anilin- und Äthylenchromophor der 2ständigen Allylgruppe ist demnach im Grundzustand bei Raumtemperatur UV.spektroskopisch nicht nachweisbar. Auch die UV.-Spektren des einfachsten Vertreters, 2-Allyl-N-methylanilin (30) [1] [7], und seines in der Seitenkette hydrierten Abkömmlings N-Methyl-2-propylanilin (31) [12] sind nahezu deckungsgleich (Fig. 1)¹³). Andererseits ist die Fluoreszenzbande von 30 gegenüber derjenigen von

¹²) Auch ein Spaltungs- und Rekombinationsmechanismus in einem Ionenpaar ist denkbar. Die bortrichloridkatalysierte Umlagerung des mit 28 vergleichbaren (+)-(1-Methyl-2-butenyl)-phenyläthers (p=0,28) in Dichlormethan bei -70° führt z. B. zu (+)-4-(1-Methyl-2-butenyl)phenol (p unbekannt) [11], was die Bildung eines «freien» 1,3-Dimethylallylkations in diesem Falle ausschliesst.

¹³) Auch die in der Seitenkette hydrierten Derivate von 15, 19 und 20 zeigen die gleichen UV.-Spektren wie 15, 19 und 20 selbst [12].

Fig. 1. Absorptionsspektren von 2-Allyl-N-methylanilin (30) und N-Methyl-2-propylanilin (31) in Methanol bei Raumtemperatur (c jeweils ca. 10⁻⁵ mol/l; in Hexan werden nahezu identische Spektren erhalten)

Fig.2. Fluoreszenzspektren von 2-Allyl-N-methylanilin (30) und N-Methyl-2-propylanilin (31) bei Raumtemperatur in Methanol (------) und Hexan (- - -). Anregung bei 297 nm (Maximum der Anregungsspektren), Anregungsspaltbreite 10 nm, Emissionsspaltbreite 1 nm, c jeweils ca. 10⁻⁵ mol/1.

31 deutlich verbreitert und im Maximum um 23 in Hexan bzw. um 16 nm in Methanol nach längeren Wellenlängen verschoben (*Fig. 2*). Diese Unterschiede sind in den Fluoreszenzspektren (Methanol) der entsprechenden N, N-Dimethylverbindungen **32** und **33** [1] [12] nicht mehr beobachtbar¹⁴) (*Fig. 3*). Offenbar spielt die Möglichkeit der Ausbildung einer starken intramolekularen Wasserstoffbrük-

2587

¹⁴) Die Elektronendonorqualität des Anilinteils von **32** und **33** sollte zumindest derjenigen von **30** und **31** entsprechen: Vgl. $I_p(N$ -Methylanilin)=7,32 eV und $I_p(N, N$ -Dimethylanilin)=7,12 eV [13].

Fig.3. Fluoreszenzspektren von 2-Allyl-N,N-dimethylanilin (32) und N,N-Dimethyl-2-propylanilin (33) in Methanol bei Raumtemperatur. Anregung bei 283 nm (Maximum der Anregungsspektren), Anregungsspaltbreite 10 nm, Emissionsspaltbreite 1 nm, c jeweils ca. 10⁻⁵ mol/l

kenbindung¹⁵) im angeregten Singulettzustand von 30 eine wesentliche Rolle für das spektroskopische Sichtbarwerden einer elektronischen Wechselwirkung zwischen Anilin- und Äthylenchromophor der 2ständigen Allylgruppe¹⁶). Nimmt man an, dass die breite Emissionsbande von 30 in Hexan oder Methanol durch die Überlagerung einer Aromatenfluoreszenzbande (A), die derjenigen von 31 entspricht, und einer zweiten Fluoreszenzbande (E) zustandekommt, welche wir versuchsweise einem intramolekularen EDA-Komplex zuschreiben¹⁷), so lassen sich durch Spektrensubtraktion die in Figur 4 wiedergegebenen, zerlegten Fluoreszenzspektren von 30 in Hexan bzw. Methanol erhalten. Es ist erkennbar, dass sich die relativen Intensitäten der A- und E-Bande in Hexan etwa wie 1:7. in Methanol aber wie 1:1 verhalten, wobei die E-Bande in Methanol (360 nm) im Vergleich zu Hexan (348 nm) deutlich bathochrom verschoben ist, wie es für einen EDA-Komplex mit ausgeprägter Ladungstrennung zu erwarten ist. Die im Vergleich zur A-Bande schwächere Intensität der E-Bande in Methanol ist möglicherweise auf die Beeinträchtigung der Stabilität des EDA-Komplexes durch intermolekulare Wasserstoffbrückenbindungen zwischen der NH-Gruppe des Anilins und Methanol zurückzuführen.

¹⁵) IR.-spektroskopisch lassen sich auch im Grundzustand von 2-Allylanilinen schwache intramolekulare Wasserstoffbrückenbindungen zwischen der NH-Gruppe und der Doppelbindung der Allylkette nachweisen [12] [14].

¹⁶) Im Einklang damit steht die Beobachtung, dass auch 4-allylierte Aniline, die keine intramolekularen Wasserstoffbrückenbindungen ausbilden können, und ihre entsprechenden 4-alkylierten Derivate quasi deckungsgleiche Fluoreszenzspektren in Methanol oder Hexan zeigen [15].

¹⁷) Wir haben die hier beschriebenen Phänomene auch bei einer ganzen Reihe weiterer, photoreaktiver (gemäss Schema 1) 2-allylierter Aniline beobachtet [12].

Spektroskopisch lassen sich also bei 2-allylierten Anilinen¹⁷), die wenigstens noch über eine freie NH-Bindung verfügen, Hinweise finden, die im Einklang mit dem Auftreten intramolekularer, durch intramolekulare Wasserstoffbrückenbindungen stabilisierter EDA-Komplexe stehen.

2.2. Bestrahlungen. Sie wurden in ca. 10^{-2} M Lösungen der Aniline unter Stickstoff mit einer Quecksilber-Hochdrucklampe durch Quarz ausgeführt. Nach Isolierung und Reinigung der Photoprodukte (vgl. exper. Teil) erfolgte die Strukturzuordnung vor allem auf spektroskopischem, zum Teil aber auch auf chemischem oder gas-chromatographischem Wege (vide infra).

Die präparative Bestrahlung von N-Methyl-2-(1'-methylallyl)anilin (15) in Methanol ergab bei vollständigem Umsatz des Reaktanden vor allem vier Photoprodukte, nämlich *trans*- und *cis*-1, 2, 3-Trimethylindolin (*trans*- und *cis*-34) sowie *erythro*- und *threo*-2-(2'-Methoxy-1'-methylpropyl)-N-methylanilin (*erythro*- und *threo*-35; Schema 7)¹⁸). Nach der chromatographischen Abtrennung der Methanoladdukte 35 wurde das Gemisch *trans/cis*-34 durch Kochen in Xylol in Gegenwart von 10proz. Pd/C zu 1, 2, 3-Trimethylindol (36) dehydriert; dabei reagierte das nur in kleiner Menge auftretende Stereoisomere bedeutend rascher (Schema 8). Wir ordnen ihm deshalb die *cis*-Konfiguration zu¹⁹). Das Indolin *trans*-34 wurde auch durch Kochen mit Mangan (IV)oxid in Benzol – wenn auch in schlechterer Ausbeute – zum Indol 36 dehydriert (*vide injra*). Die Konfigurationszuordnung von

¹⁸) Bei dieser und bei allen anderen hier diskutierten Photoreaktionen liessen sich gas-chromatographisch – vor allem bei langen Bestrahlungsdauern – noch weitere, in sehr kleinen Mengen (ca. 1%) auftretende Photoprodukte nachweisen (vgl. exper. Teil). Ihre Summe ist bei den Prozentangaben in den Schemata berücksichtigt.

¹⁹) Diese Zuordnung steht im Einklang mit ¹H-NMR.-spektroskopischen Befunden: Das H₃C-C(2) von trans-34 besitzt nahezu die gleiche chemische Verschiebung (CCl₄: 1,28 ppm) wie H₃C-C(2) von 1,2-Dimethylindolin (CDCl₃: 1,27 ppm [1]). Dagegen erscheinen bei cis-34 aufgrund des van-der-Waals-Abschirmeffektes vicinaler Alkylgruppen sowohl das Signal von H₃C-C(2) (CCl₄: 1,13 ppm) als auch das von H₃C-C(3) (1,07 ppm; bei trans-34 1,28 ppm) bei höherem Feld. Diese Verschiebungsdifferenzen wurden auch bei den anderen, in dieser Arbeit beschriebenen cis- und trans-Indolinen gefunden (vgl. exper. Teil).

erythro-35(29,8%) threo-35(14,0%)

^a) In diesem *Schema* und den folgenden ist jeweils nur ein Enantiomeres gezeichnet. Die Prozentangaben basieren auf gas-chromatographischen Analysen.

36

erythro- und *threo-***35** erfolgte aufgrund ihrer unterschiedlichen ¹H-NMR.-Spektren (vgl. Kap. 4).

Aufschluss über die Bildung der Stereoisomeren von 34 und 35 ergab die Bestrahlung von d_3 -15 in Methanol²⁰). Hierbei bildete sich ein Gemisch aus 38,0% trans- und 6,3% cis- d_3 -34 sowie 27,5% erythro- und 12,3% threo- d_3 -35, aus welchem erythro- und threo- d_3 -35 nach der dünnschichtchromatographischen Abtrennung von trans/cis- d_3 -34 durch präparative Gas-Chromatographie isoliert wurden. Die ¹H- und ²H-NMR.-Spektren zeigten, dass erythro- d_3 -35 die Deuterium-Markierung nahezu ausschliesslich in der Methylgruppe an C(1') trug und in der Methylgruppe an C(2') weniger als 5% (Nachweisbarkeitsgrenze) des Gesamtdeuteriumgehaltes zu finden waren (Schema 9). Andererseits wies threo- d_3 -35 eine (1:1)-Verteilung des Gesamtdeuteriumgehaltes zwischen den beiden Methylgruppen an C(1') und C(2') auf, d.h. es bestand zu 50% aus Molekeln mit einer Trideuteriomethylgruppe an C(1') und zu 50% aus Molekeln mit einer Trideuteriomethylgruppe an C(2').

²⁰) Die Bestrahlung von 15 in O-Deuteriomethanol lieferte 25,8% trans- und 2,7% cis-34 sowie 36,8% erythro- und 17,5% threo-35. Das aus trans/cis-34 hergestellte Indol 36 enthielt laut ²H-NMR.-Spektrum Deuterium im Sechsring und in der Methylgruppe an C(2). Bei erythro-35 liess sich ¹H-NMR.-spektroskopisch Deuterium vor allem in der Methylgruppe an C(2') feststellen, während es sich bei threo-35 auf die Methylgruppen an C(1') und C(2') verteilte (vgl. exper. Teil).

Aus *trans/cis*-d₃-34 wurde *trans*-d₃-34 erhalten, indem die *cis*-Komponente durch 5 min. Kochen in Gegenwart von 10proz. Pd/C in Xylol zum Indol d₃-36 dehydriert und dieses durch Chromatographie abgetrennt wurde. *trans*-d₃-34 wurde darauf mit einem grossen Überschuss von Mangan (IV)oxid in Benzol ebenfalls zu d₃-36 dehydriert²¹). Die ¹H- und ²H-NMR.-Spektren (Benzol) des aus *cis*- und *trans*-d₃-34 gewonnenen Indols d₃-36 liessen Deuterium nur in der Methylgruppe an C(3) erkennen (*Schema 9* und *Fig. 5*). Demnach scheint die Bildung von *trans*- und *cis*-d₃-34 auf direktem Wege ohne Umlagerung der Seitenkette zu erfolgen, während die Bildung von *threo*-d₃-35 das Auftreten von mindestens einem symmetrischen Zwischenprodukt, nämlich dem Spirodienimin *cis*-11 (R¹=CD₃, R²=CH₃; *Schema 2*) erfordert.

Die einstündige Bestrahlung von d₃-15 in Benzol führte zu 68,2% *trans-* und 17,4% *cis-*d₃-34 sowie mehreren Nebenprodukten in kleineren Mengen (*Schema 10*). Dabei liessen sich sowohl in dem aus *cis-*d₃-34 als auch in dem aus *trans-*d₃-34 erhaltenen Indol d₃-36 14 bzw. 12% des Gesamtdeuteriumgehaltes in der Methylgruppe an C(2) nachweisen (*Schema 10* und *Fig. 5*)²²). Bei der Bestrahlung von d₃-15 in Benzol dürfte die Bildung der Indoline *trans-* und *cis-*d₃-34 deshalb wenigstens zum Teil über Spirodienimine (vgl. *Schema 2*) erfolgen, die einen Austausch von C(1') und C(2') im Biradikal 7 (R¹= CD₃, R²= CH₃) erlauben.

Um die Ergebnisse der Bestrahlung von d_3 -15 in Methanol an einem anderen Substrat zu überprüfen, wurde 2-(1'-Äthylallyl)anilin (16) 75 Min. in Methanol

²¹) Vorversuche mit *trans*-d₃-34 zeigten, dass bei der Dehydrierung mit 10proz. Pd/C in siedendem Xylol (120 Min.) Deuterium aus der Methylgruppe an C(3) ausgewaschen und zum Teil auf die Methylgruppen an N(1) und C(2) sowie auf die Stellungen der aromatischen Protonen übertragen wurde.

²²) Ein zweiter Bestrahlungsansatz ergab 68,3% *trans*- und 18,9% *cis*-d₃-35. Die Dehydrierung von *cis*-d₃-34 führte zu d₃-36 mit 16% des Gesamtdeuteriumgehaltes in H₃C-C(2) (d.h. x=2,52; vgl. Schema 10).

Fig.5. FT.-²H-NMR.-Spektren (15,4 MHz; Benzol) von deuteriertem 1,2,3-Trimethylindol (d₃-36), erhalten aus cis- bzw. trans-d₃-34 aus dem Bestrahlungsansatz von d₃-15 in Methanol ((a) bzw. (b)) und Benzol ((c) bzw. (d)). Ausschnitt der Region der Methylgruppen an C(2) und C(3).

bestrahlt. Die nach 45 Min. gas-chromatographisch ermittelte Produktzusammensetzung²³) ist in *Schema 11* wiedergegeben. *trans*- und *cis*-3-Äthyl-2-methylindolin (*trans*- und *cis*-37) wurden durch Chromatographie an Kieselgel aus dem Reaktionsgemisch abgetrennt und spektroskopisch sowie durch Dehydrierung zum 3-Äthyl-2-methylindol (38) identifiziert. Aus dem Gemisch der Methanoladditionsprodukte

²³) Die relative Produktzusammensetzung des Photolysats war innerhalb des Zeitraumes von 75 Min. weitgehend unabhängig von der Bestrahlungsdauer (vgl. exper. Teil).

wurden *erythro-* und *threo-39* durch präparative Gas-Chromatographie isoliert, während *erythro-* und *threo-40* als Gemisch erhalten wurden. Die Massenspektren (erhalten durch GC./MS.-Kopplung) der Diastereoisomeren von 39 und 40 erlaubten aber eine eindeutige Strukturzuordnung, denn bei beiden Isomerenpaaren erfolgt erwartungsgemäss ein bevorzugter Bruch der C(1'), C(2')-Bindung, der bei 39 zu Fragment-Ionen bei m/z 134 und 59, bei 40 hingegen zu solchen bei m/z 120 und 73 führt. Damit muss bei *erythro-* und *threo-40* eine umgelagerte Seitenkette vorliegen²⁴), was wiederum am besten mit dem intermediären Auftreten von Spirodieniminen (vgl. Schema 2) zu erklären ist²⁵).

Die Annahme, dass Spirodienimine bei der Bestrahlung von 2-allylierten Anilinen transitorisch auftreten, wird durch die Ergebnisse des Bestrahlungsexperiments mit N, 3, 5-Trimethyl-2-(1'-methylallyl)anilin (17) weiter untermauert (Sche-

²⁴) Die Zuordnung der *erythro-* und *threo-*Konfiguration stützt sich bei 40 nur auf das gas-chromatographische Retentionszeitenverhältnis (Retentionszeit(*erythro*)/Retentionszeit(*threo*)=1,05), für das bei allen anderen ¹H-NMR.-spektroskopisch zugeordneten *erythro/threo-*Paaren Werte von 1,03-1,06 gefunden wurden (vgl. Kap. 4).

²⁵) Die Bestrahlung von 2-(1'-Methyl-2'-butenyl)anilin (19; Schema 3) in Methanol sollte zu den gleichen Methanoladditionsprodukten 39 und 40 führen, wie sie aus 16 erhalten wurden. Ein mit kleinen Mengen von 19 durchgeführter Bestrahlungsansatz in Methanol zeigte, dass 19 wesentlich langsamer reagierte als 16 und vor allem zwei Produkte gebildet wurden, bei denen es sich sehr wahrscheinlich um *trans-* und *cis-2-*Äthyl-3-methylindolin handelte (vgl. [2]). Gaschromatographisch liessen sich im Bereich der Retentionszeiten der methoxylierten Produkte *erythro-* und *threo-*39 nicht nachweisen (Nachweisbarkeitsgrenze *ca.* 0,5%).

ma 12). Die Methanoladditionsprodukte erythro- und threo-43 wurden im Vergleich zu den Experimenten mit N-Methyl-2-(1'-methylallyl)anilin (15; vgl. Schema 7) nur in geringen Mengen gebildet. Hauptprodukt war cis-1,2,3,4,6-Pentamethylindolin (cis-41); die trans-Form konnte nicht nachgewiesen werden²⁶). Der Rückgang der Bildung der Methanoladditionsprodukte 43 steht im Einklang mit einer erschwerten Ausbildung der Spirodienimin-Zwischenprodukte, hervorgerufen durch die sterische Wechselwirkung der 4ständigen Methylgruppe mit dem Cyclopropanring (C(1), C(2); vgl. Schema 2). Des weiteren sollte die Bildung von Spirodieniminen vom Typ trans-9 von der sterischen Wechselwirkung mit H₃C-C(4) stärker betroffen werden als die Bildung von cis-Strukturen des Typs 11. Diese sterischen Effekte sollten sich in einer Abnahme der erythro- relativ zu den threo-Methanoladdukten bemerkbar machen. Dies wird auch beobachtet, denn bei der Bestrahlung von 15 und d₃-15 beträgt das erythro/threo-Verhältnis 2,2±0,1, bei jener von 17 aber nur 1,45±0,1.

Erstaunlicherweise entstanden bei der Bestrahlung von 2-(2'-Cyclohexenyl)-N-methylanilin (18) in Methanol, bei welcher wir die Hoffnung hatten, dass sich nur ein *cis*-konfiguriertes Spirodienimin 47 bilden würde, gar keine Methanoladditionsprodukte vom Typ 48 (Schema 13). Als Hauptprodukte wurden *trans*und *cis*-9-Methyl-1,2,3,4,4a,9a-hexahydrocarbazol (*trans*- und *cis*-44) sowie 2-(Bicyclo[3.1.0]hex-6'exo-yl)-N-methylanilin (exo-45) durch präparative Dünnschichtchromatographie isoliert. Das *cis*-Isomere 44 wurde schon bei den Reinigungsoperationen teilweise zum Tetrahydrocarbazol 46 dehydriert. Durch die übliche Dehydrierung mit Pd/C wurden sowohl *cis*- als auch *trans*-44 in 46 übergeführt. Der nur bei der Photoreaktion von 18 in grösserer Menge gebildete Verbindungstyp 45 resultiert wahrscheinlich aus dem Triplett-Zustand von 18 und stellt das Ergebnis einer aromatischen Di- π -methan-Umlagerung dar (vgl. [1])²⁷). Die Struktur und Konfiguration von *exo-45* ergibt sich aus seinem ¹H-NMR.-

²⁶) In geringem Anteil (3,2%) trat ein weiteres Photoprodukt auf, dessen Struktur nicht bestimmt werden konnte. Um *trans-41* handelte es sich dabei aufgrund seiner gas-chromatographischen Retentionszeit jedoch nicht. Auch wurde es beim Kochen mit 10proz. Pd/C in Xylol nicht dehydriert. *cis-41* liess sich leicht zum Indol 42 dehydrieren, und im ¹H-NMR.-Spektrum (CCl₄) von *cis-41* erschien H₃C-C(3) bei relativ hohem Feld (0,93 ppm; vgl. Fussnote 19).

²⁷) Cyclopropanverbindungen werden auch bei der Bestrahlung von 4-allylierten 2,6-Dimethylanilinen als Nebenprodukte erhalten (vgl. [15]). Des weiteren bilden sie die einzigen Produkte bei der Bestrahlung der N, N-dimethylierten Formen der voranstehend beschriebenen Aniline (Schema 3) [16].

und ¹³C-NMR.-Spektrum. Letzteres lässt C_s -Symmetrie erkennen, und die beobachteten Verschiebungen entsprechen denen anderer phenylsubstituierter Bicyclo[3.1.0]hexane (vgl. [17]). Da im ¹H-NMR.-Spektrum zwischen H-C(6') und H-C(1') bzw. H-C(5') keine Kopplung >4 Hz beobachtet wird, muss sich der (Methylamino)phenylsubstituent an C(6') in der *exo*-Lage befinden (vgl. [17]).

Das Bestrahlungsexperiment mit 18 zeigt, dass im zu erwartenden Biradikal vom Typ 7 (Schema 2), in welchem die Kette $R^{1}-C(1')-C(2')-CH_{3}$ Teil eines Sechsringes ist, der 1,3-Ringschluss zum Spirodienimin 47 (Schema 13) aus sterischen Gründen offenbar nicht mit dem 1,5-Ringschluss zu den Hexahydrocarbazolen 44 konkurrieren kann. Dass die Spirodienimin-Bildung durch sterische Wechselwirkungen leicht beeinträchtigt werden kann, hatte schon die Bestrahlung von 17 in Methanol gezeigt (Schema 12).

3. Diskussion. – Die im voranstehenden Kapitel beschriebenen Versuchsergebnisse machen es sehr wahrscheinlich, dass bei der Bestrahlung der 2-allylierten Aniline in Methanol in Konkurrenz zu den Indolinen vom Typ 8 (Schema 2) Spirodienimine gebildet werden, die im Grundzustand²⁸) mit Methanol zu den beobachteten 2-(2'-Methoxyalkyl)anilinen vom Typ 13 und 14 reagieren.

Die bei der Photoreaktion von d_{3} -15 und 16 erzielten Resultate deuten darauf hin, dass die Spirodienimin-Bildung grundsätzlich dergestalt erfolgt, dass sich die durch Protonenübertragung auf C(3') der Allylseitenkette entstehende Methylgruppe im Spirodienimin in der *cis*-Lage zur Iminogruppe befindet²⁹), d.h. gemäss

²⁸) Wir haben zu diesem Punkt keine gesonderten Experimente ausgeführt. Es ist anzunehmen, dass Spirodienimine vom Typ 9 ähnliche UV.-Maxima besitzen wie 6,6-dialkylierte 2,4-Cyclohexadien-1-one (vgl. z.B. [11]), d.h. prinzipiell unter den Bestrahlungsbedingungen der Aniline anregbar sein sollten. Da Solvolysereaktionen von mit 9 vergleichbaren Spiro[2.5]octa-4,6-dien-8-onen schon unterhalb 0° rasch verlaufen (vgl. [18]), ist anzunehmen, dass auch die photochemisch aus den 2-allylierten Anilinen gebildeten Spirodienimine vom Typ 9 sofort vom Methanol abgefangen werden. Andererseits ist Bestrahlungsexperimenten mit Spiro[2.5]octa-4,7-dien-6-onen zu entnehmen (vgl. [19]), dass in ihrem angeregten Zustand die Cyclopropanbindung biradikalisch, nicht aber zwitterionisch gespalten wird, was auch für angeregte Spirodienimine des Typs 9 zutreffen dürfte.

²⁹) In diesem Sinne entspricht die Photoreaktion der 2-allylierten Aniline dem einleitenden Schritt der abnormalen *Claisen*-Umlagerung 2-allylierter Phenole (vgl. [4] [6] [20]), nämlich einer thermischen homosigmatropischen [1.5s]-Wasserstoffverschiebung.

Schema 2 wird zumindest stark bevorzugt *trans-9* (und dementsprechend wohl auch nur cis-11 ($R^1=CD_3$ bzw. C_2H_5 , $R^2=CH_3$ bzw. H)) gebildet. Andernfalls liesse sich nicht erklären, dass aus d₃-15 das Methanoladdukt *erythro-*d₃-35 (vgl. Schema 9) entsteht, welches die Deuteriummarkierung innerhalb der NMR.spektroskopischen Genauigkeit, d.h. zu mindestens 95%, in der ursprünglichen Stellung, nämlich der Methylgruppe an C(1') trägt. Auch bei der Bestrahlung von 16 beträgt der Anteil von *erythro-*40 bei den *erythro-*Verbindungen nur knapp 7% (Schema 11). Die Menge an *trans-*10, die neben *trans-*9 entsteht, kann also höchstens 5 bzw. 7% betragen. Diese Berechnung setzt aber voraus, dass bei *trans-*9 und -10 ausschliesslich die Cyclopropanbindung C(2), C(3) bzw. C(1), C(3) durch Methanol geöffnet wird, die den zur Iminogruppierung cis-stehenden Alkylsubstituenten (CH₃ bzw. CD₃ oder C₂H₅) trägt. Wahrscheinlicher erscheint die Annahme, nur *trans-*9 werde gebildet und regioselektiv an der C(2), C(3)-Bindung unter Bildung von *erythro-*13 ($R^1=CD_3$ bzw. C₂H₅, $R^2=CH_3$ bzw. H) durch Methanol geöffnet³⁰).

Zu diesen zwei im vorliegenden Fall mechanistisch nicht unterscheidbaren Möglichkeiten gesellt sich noch eine prinzipiell unterscheidbare dritte, nämlich die, dass *cis*-11 ($R^1 = CD_3$ bzw. C_2H_5 , $R^2 = CH_3$ bzw. H) mit Methanol zu höchstens 10 bzw. mindestens 7% unter Retention und Bildung von *erythro*-13 und -14 ($R^1 = CD_3$ bzw. C_2H_5 , $R^2 = CH_3$ bzw. H) reagiert (vgl. hierzu Fussnote 6)³¹).

Die cis-Stellung der Methylgruppe bezüglich der Iminogruppe in den Spirodieniminen trans-9 und cis-11 ($R^1 = CD_3$ bzw. C_2H_5 , $R^2 = CH_3$ bzw. H) setzt voraus, dass auch im Diradikal 7 schon eine bestimmte Konformation vorgegeben ist, die möglicherweise wie schon erwähnt (Kap. 2.1) durch eine intramolekulare Wasserstoffbrückenbindung in den EDA-Komplexen **6a** und **6b** (Schema 14) vorausbestimmt wird. Mit dieser Annahme lässt sich auch verstehen, dass bei der Bestrahlung von 17 (Schema 12) kein trans-Indolin **41** gefunden wurde, denn die Ausbildung des entsprechenden EDA-Komplexes **6a** ($R^1 = R^2 = CH_3$, und CH₃ in Stellung 3 und 5) sollte aufgrund der [CH₃-C(1'), CH₃-C(3)]-Wechselwirkung

³⁰) Bei der solvolytischen Ringöffnung von 1-Methyl- und 1, 1-Dimethyl-spiro[2.5]octa-4,6-dien-8-onen bzw. 1, 1-Dimethyl-spiro[2.5]octa-4,7-dien-6-onen reagiert stets die methylsubstituierte Cyclopropanbindung mit dem Lösungsmittel (vgl. die in [1] zit. Lit.). Es ist anzunehmen, dass diese Ringöffnungen unter Beteiligung der Walsh-Orbitale des Cyclopropanringes erfolgen und die Lösung der betreffenden Cyclopropanbindung schon weit fortgeschritten ist, bevor das nukleophile Lösungsmittel eingreift, wodurch grundsätzlich die Öffnung der höheralkylierten Cyclopropanbindung begünstigt werden sollte. Bei der Solvolyse von Spiro[2.5]octa-4,6-dien-8-iminen oder -onen könnte hinzukommen, dass das sich am ursprünglichen Cyclopropan-C-Atom entwickelnde, nicht gefüllte *p*-Orbital mit dem besetzten *n*-Orbital am Heteroatom (N,O) in bindende Wechselwirkung tritt. Hierbei würde ein zur Imino- oder Ketogruppe cis-stehender Alkylsubstituent (CH₃ in trans-9) nach aussen bewegt, was zu einer Verminderung der sterischen Wechselwirkungen (H₃C-C(2) und C(3),C(8)-Bindung in trans-9) rasch anwüchsen, so dass bevorzugt die den cis-stehenden Substituent tragende Cyclopropanbindung geöffnet wird.

³¹) Ein orientierendes Bestrahlungsexperiment mit optisch aktivem N-Methyl-2-(1'-methylallyl)anilin (15) führte zu racemischem *threo*-35 und optisch aktivem *erythro*-35 [21], was zumindest zeigt, dass *trans*-9 (R¹=R²=CH₃) nur unter Inversion mit Methanol reagiert. Anderenfalls hätte unter Retention aus *trans*-9 gebildetes *threo*-35 optisch aktiv sein müssen.

^a) Siehe auch Schema 2.

gegenüber jener von **6b**, das nur eine $[H-C(1'), CH_3-C(3)]$ -Wechselwirkung aufweist, stark benachteiligt sein. Nach diesem Konzept sollte jedoch auch aus **18** (Schema 13) photochemisch nur das cis-Hexahydrocarbazol **44** entstehen, da sich ein EDA-Komplex des Typs **6a** aufgrund des Vorliegens des Cyclohexenringes nicht ausbilden kann. Da aber mehrheitlich trans-**44** entstand, scheint die Möglichkeit der Ausbildung von intramolekularen Wasserstoffbrückenbindungen in den EDA-Komplexen eine begünstigende, nicht aber notwendige Bedingung für die Photoreaktion von 2-allylierten Anilinen zu sein. Hierfür sprechen die Photoreaktionen von 4-allylierten 2,6-Dimethylanilinen [15] und die kürzlich beschriebenen photochemischen Umsetzungen von Allylphenolaten in Methanol [22], die prinzipiell gleich verlaufen wie die der 2-allylierten Aniline.

Unsere Resultate stehen im Gegensatz zu Berechnungen von Lattes et al. [14], nach welchen die Photocyclisierung von 2-allylierten Anilinen zu Indolinen durch Protonierung der durch intramolekulare Energieübertragung im Singulett-Zustand orthogonal verdrehten, zwitterionischen «Doppelbindung» der Allylseitenkette eingeleitet wird³²). In der Tat liesse sich die Spirodienimin-Bildung auch durch 1,3-Ringschluss eines Zwitterions erklären. In diesem Falle sollte aber die Photocyclisierung von 2-allylierten Phenolen, die durch intramolekulare Protonierung der

Tabelle 1. Vergleichende Bestrahlungsexperimente mit 2-allylierten N-Methylanilinen und Phenolen^a)

R	Allyl	l'-Methylallyl	2'-Butenyl ^b)	3'-Methyl-2'-butenyl
$\phi_{rel} (X = CH_3N)^c)$	1,00	0,92	0,41	< 0,1
$\phi_{\rm rel} ({\rm X}={\rm O})^{\rm d})$	1,00	1,06	1,02	0,99

^a) ϕ_{rel} = relative Quantenausbeute der Abnahme des Reaktanden, bestimmt in einer Karussell-Bestrahlungsapparatur.

^b) Die präparative Bestrahlung von 2-(2'-Butenyl)-*N*-methylanilin (**20**) in Methanol führte bei 86% Umsatz zu 50,0% 2-Äthyl-1-methylindolin (**49**) und 30,2% 2-(2'-Methoxybutyl)-*N*-methylanilin (**50**).

c) In Methanol, Vycor-Filter, 15-W-Quecksilber-Niederdrucklampe.

d) In Cyclohexan, Vycor-Filter, 125-W-Quecksilber-Hochdrucklampe.

³²) Nach unseren Ergebnissen erfolgt die photochemische *trans, cis*-Isomerisierung von 2-(2'-Butenyl)anilinen nur vom Triplett-Zustand aus [16].

Allylseitenkette im S_1 -Zustand ausgelöst wird (vgl. [4] und dort zit. Lit. sowie [23]), und 2-allylierten Anilinen mehr Gemeinsamkeiten aufweisen als tatsächlich gefunden werden. Es wird vielmehr ein konträres reaktives Verhalten festgestellt, das besonders bei der Photoreaktivität von methylsubstituierten Allylderivaten der Aniline (vgl. auch [15]) und Phenole zutage tritt. Durch Methylsubstitution an der Doppelbindung sollte die Energie des π - und des π^* -Orbitals angehoben werden, was sich auf eine Protonierung günstig (Wechselwirkung mit dem π -Orbital), auf eine Elektronenübertragung (Wechselwirkung mit dem π^* -Orbital) aber nachteilig auswirken muss. Tabelle 1 fasst die relativen Quantenausbeuten der Photoreaktion von 2-allylierten Anilinen und entsprechender Phenole [16] zusammen. Wie zu erkennen ist, nimmt die Reaktivität der N-Methylaniline in Methanol bei Methylsubstitution an C(3') deutlich ab, während die der entsprechenden Phenole in Cyclohexan etwa konstant bleibt³³). Dies ist verständlich, wenn berücksichtigt wird, dass alle Allylphenole der *Tabelle 1* etwa gleich starke intramolekulare $(OH - - \pi)$ -Wasserstoffbrückenbindungen (gemessen in Tetrachlorkohlenstoff bei 20° [16]) besitzen und auch gleich grosse $pK_a(S_1)$ -Werte (für 2-Äthylphenol in Wasser = 3,3; vgl. [24]) aufweisen sollten.

Der hier vorgeschlagene EDA-Mechanismus der Photocyclisierung von 2-allylierten Anilinen sollte, falls er zutrifft, allgemeinerer Natur sein und auch intermolekulare Reaktionen erlauben, sofern der Reaktionspartner der S_1 -angeregten Aniline tiefliegende LUMO's besitzt. Tatsächlich gelang es uns, Aniline (z.B.

³³) Da die Photoreaktivität der 2-allylierten Phenole von der intramolekularen $(OH \cdots \pi)$ -Wasserstoffbrücke abhängt und diese in Methanol durch intermolekulare Brückenbindungen zerstört wird, liess sich ϕ_{rel} der Phenole in Methanol nicht bestimmen. Die Photoumsetzung der N-Methylaniline gelingt auch in Cyclohexan, doch trat hierbei unter den gewählten Bedingungen zu starker Materialverlust (Polymerenbildung?) ein, so dass ϕ_{rel} nicht sicher bestimmt werden konnte. Qualitativ gilt aber auch hier, dass die drei N-Methylaniline **30** (R=Allyl), **15** (R=l'-Methylallyl) und **20** (R=2'-Butenyl) die entsprechenden Indoline lieferten, während beim N-Methyl-2-(3'-methyl-2'-butenyl)anilin keine Produktbildung beobachtet wurde.

Ver	bindung	erythro-F	шo		and the second second second		threo-Fo					Retentions-
	0	J(1',2')	R	R ²	R ³	CH ₃ N	J(1',2')	R¹	R ²	R ³	CH ₃ N	zeit(erythro)/ Retentions- zcit(threo) ^b)
ļ	H3CNH CH3 CH3 OCH3	4,5	1,21	16'0	3,29	2,74	6,6	1,20	1,07	3,14	2,76	1,05
	39 000 000 000 000 000 000 000 000 000 0	5,0	1,79; 1,64°) 0,83ď)	0,96	3,33	1	6,0	1,82; 1,74 ^c) 0,76 ^d)	1,04	3,23	1	1,03
.э£н	H ₃ CNH CH ₃ CH ₃ CH ₃ CH ₃	6,0	1,26	0,96	3,36	2,71	6,0	1,23	1,06	3,27	2,74	1,06
H ₃ C. H ₂ N	ch ₃ ch ₃ ch ₃ ch ₃	ca. 7,2	1,25	0,95	3,29	I	5,4	1,18	1,01	3,23	I	1,05
N ₂ O	e ^{H3} H ² H ² H ² H ² H ² H ² H ² H ²	I.	1. 1.	T	1	ı	6-7	1,37	1,09	2,52 (OH)	1	ı
(c)	Die ¹ H-NMR bungen in ppr Verhältnis der Die chemische CH ₃ CH ₂ -C(1)	Spektren n, J in Hz gas-chromá 2n Verschiá).	der Ver i), diejeni atographi ebungen	bindunger gen der be schen Rete der diaste	t 35, 39 ul siden Verglantionszeiter reotopen M	nd 43 wurden eichsverbindunge 1 an Glas-Kapilla 1ethylenprotonen	in Tetrachlor en in Deuterio rkolonnen, be für C ₂ H ₅ -C(kohlenstol chloroforr sladen mit (1') wurde	ff bei 90 n. OV-1, O n simulie) MHz aufger V-61 oder UC(rten Spektren	aommen (cher ON-HB. entnommen.	aische Verschie-

2599

18 und 20) mit konjugierten Dienen (z. B. *trans*-1, 3-Pentadien) bei der Einstrahlung in den Anilinchromophor zur Reaktion zu bringen [25] (*Schema 15*). Dabei kann bei 18 und 20 die intramolekulare Addition der NH-Gruppe an die allylische Doppelbindung kaum noch mit der intermolekularen an das Diensystem zu 51 bzw. 52 konkurrieren³⁴), was gut mit einem EDA-Mechanismus in Einklang zu bringen ist.

4. ¹H-NMR.-Spektren der erythro- und threo-Verbindungen. – Die erythro- und threo-Konfiguration bei Verbindungen des Typs 53 lässt sich nach Schmid [26] aufgrund der ¹H-NMR.-Spektren dieser Verbindungen zuordnen, denn bei mehr als 10 erythro/threo-Paaren wurde gefunden, dass

53 (X,Y = Br,CL,OH,OAc)

stets gilt $\delta_{threv}(H_3C-C(2')) > \delta_{erythro}(H_3C-C(2'))$. Nimmt dabei die chemische Verschiebungsdifferenz von $H_3C-C(2')$ Werte ≥ 0.2 ppm an, so soll zudem $J_{threo}(H-C(1'), H-C(2')) > J_{erythro}(H-C(1'), H-C(2')) > J_{erythr$ H-C(2')) sein, während für $\Delta\delta(H_3C-C(2')) \leq 0.1$ ppm die vicinale *threo*-Kopplung kleiner als die vicinale erythro-Kopplung sein soll. In Tabelle 2 sind die wichtigsten ¹H-NMR.-spektroskopischen Daten der in dieser Arbeit beschriebenen erythro/threo-Paare zusammengestellt. Zu Vergleichszwecken sind noch die Werte von erythro- und threo-4-(2'-Methoxy-1-methylpropyl)-2,6-dimethylanilin [15] und von threo-1-Methyl-2-(4'-nitrophenyl)propanol [27] mit aufgenommen. Es ist zu erkennen, dass die für 53 bestimmten ¹H-NMR.-Unterschiede, die auf Konformationseffekte zurückgeführt werden, im wesentlichen auch für die in Tabelle 2 aufgeführten Verbindungen gelten, die anstelle des X-Substituenten an C(1') eine Alkylgruppe tragen. Grundsätzlich wird auch hier gefunden, dass δ_{ihreo} (H₃C-C(2')) > $\delta_{erythro}$ (H₃C-C(2')) ist. Für erythro- und threo-35, welche die grösste Differenz $\Delta\delta(H_3C-C(2'))$ von 0.16 ppm aufweisen, gilt auch, dass $J_{three}(1',2') > J_{ervthree}(1',2')$ ist. Bei 39 und **43**, die $\Delta\delta(H_3C-C(2'))$ -Werte von 0,08 und 0,10 ppm besitzen, werden sehr ähnliche vicinale Kopplungskonstanten gefunden und erst 4-(2'-Methoxy-1-methylpropyl)-2,6-dimethylanilin zeigt bei $\Delta\delta(H_3C-C(2)) = 0.06$ ppm $J_{threo}(1',2') < J_{ervthro}(1',2')$, so wie es Schmid bei seinen Verbindungen gefunden hat. Als aussagekräftig erweist sich noch die Lage des Signals der Methoxygruppe an C(2'). Es erscheint nämlich bei allen threo-Verbindungen im Vergleich zu den erythro-Formen bei höherem Feld.

Wir danken Herrn D. Mooser für experimentelle Mitarbeit, Herrn F. Nydegger für Elementaranalysen, Herrn Dipl.-Chem. M. Cosandey für ²H- und ¹³C-NMR.-Spektren, Herrn Dipl.-Chem. W. Bernhard für Massenspektren sowie Herrn H. Frohofer, Organisch-chemisches Institut der Universität Zürich, für die Deuteriumanalysen. Dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung danken wir für die Unterstützung der vorliegenden Arbeit.

Experimenteller Teil

Allgemeine Bemerkungen. Siehe [7]. Bei der analytischen Gas-Chromatographie (GC.) wurden anstelle der Emulphor-beladenen Glaskapillarkolonne OV-1- und OV-61-beladene Glaskapillarkolonnen (Länge jeweils 20 m) verwendet. Präp. GC. wurde, wenn nichts anderes angegeben wird, auch mit einer Kolonne (Länge 2 m, Durchmesser 10 mm) ausgeführt, die Chromosorb W, beladen mit 10% 1,2,3,4,5,6-Hexakis(2-cyanoäthoxy)hexan. enthielt.

1. Herstellung der Aniline. – 1.1. Synthese von N-Methyl-2-(1'-methylallyl)anilin (15). 1.1.1. N-(2'-Butenyl)-N-methylanilin (54). Ein Gemisch aus 43 g (0.4 mol) N-Methylanilin, 36,2 g (0,4 mol) 1-Chlor-2-buten und 25,4 g (0,25 mol) Natriumcarbonat wurde in 200 ml Äthanol/Wasser 4:1 24 Std. unter Rückfluss gekocht. Aufarbeitung (vgl. [7]) und Destillation bei 112-114°/10 Torr lieferten 50,4 g (78%) 54 als (E)/(Z)-Gemisch (GC.: 87% (E)-, 12% (Z)-Isomer und zwei Nebenprodukte). – IR.: 2820 (CH₃N), 1602/1510 (Ar), 974 (CH=CH. trans); 758/700 (5 benachbarte arom. H). – ¹H-NMR.:

³⁴) Bei der Bestrahlung von Anilin in Methanol in Gegenwart von 1-Hexen wurde kein N-Hexylanilin enthalten. In Gegenwart von Butadien, *trans*-1,3-Pentadien, lsopren und 1,3-Cyclohexadien wurden hingegen die Additionsprodukte an die Diensysteme erhalten [25].

7,3-6,4 (*m*, 5 arom. H); 5,7-5,3 (*m*, 2 H, H-C(2') und H-C(3')); 4,0-3,6 (*m*, 2 H, 2 H-C(1')); 2,82 (*s*, 3 H, CH₃N); 1,66 (*d*, 3 H, 3 H-C(4')). - MS.: 161 (M^+ , 100), 146 (59), 120 (77), 117 (51), 116 (37), 114 (18), 77 (39).

C₁₁H₁₅N (161,25) Ber. C 81,94 H 9,38 N 8,68% Gef. C 82,08 H 9,40 N 8,65%

1.1.2. Säurekatalysierte Umlagerung von 54. Ein Gemisch von 17,9 g (0,11 mol) 54 und 1,2 l 0,1N Schwefelsäure wurde im Autoklaven 2 Std. auf 175° erhitzt. Das isolierte Amingemisch (10,9 g, 61%) bestand laut GC. aus 48,6% trans- und cis-1,2,3-Trimethylindolin (trans- und cis-34), 23,8% 15, 2,3% 54 und 6 nicht identifizierten Nebenprodukten. Es wurde mit 11 g Trifluoressigsäure-anhydrid versetzt und dann mit 10proz. Salzsäure ausgeschüttelt, um die Indoline zu entfernen. Die alkalische Hydrolyse (KOH/Aceton/H₂O) des rohen Trifluoracetamids ergab 8,2 g Produkt, das durch Säulenchromatographie (Kieselgel, Benzol) und KR.-Destillation gereinigt wurde: 1,28 g (7%) 15 in einer Reinheit (GC.) von 96,7%. – UV. (Cyclohexan): Max. 294 (2800), 244 (10100); Min. 268 (850). UV. (Methanol): Max. 292 (2460), 243 (8900); Min. 267 (980). – IR.: 3435 (NH), 3078 (=CH₂), 2820 (CH₃N), 1636 (C=C), 1603/1585/1510 (Ar), 1005/921 (CH=CH₂), 752 (4 benachbarte arom. H). – ¹H-NMR.: 7,1-6,3 (m, 4 arom. H); 5,91 ($d \times d \times d$, 1 H, H-C(2')); 5,2-4,8 (m, 2 H, 2 H-C(3')); 3,61 (br. s, 1 H, HN); 3,36 ($qa \times d$, 1 H, H-C(1')); 2,79 (s, 3 H, CH₃N); 1,36 (d, 3 H, H₃C-C(1')). – MS.: 161 (M^+ , 81), 146 (100), 132 (30), 131 (35), 130 (26), 119 (20), 118 (19), 117 (14).

C11H15N (161,25) Ber. C 81,94 H 9,38 N 8,68% Gef. C 81,98 H 9,46 N 8,66%

1.2. Synthese von N-Methyl-2-(l'-(trideuteriomethyl)allyl)anilin (d₃-15). 1.2.1. N-(2'-Propinyl)-Ntritylanilin (24). Eine Lösung von 15,9 g (0,12 mol) N-(2'-Propinyl)anilin (hergestellt nach [28]; Sdp. 113-115,5°/11 Torr) in 140 ml trockenem Chloroform wurde mit 37.6 g (0,135 mol) Tritylchlorid und 37.4 g (0,37 mol) Triäthylamin 22 Std. bei RT. gerührt (vgl. [29]). Dann wurde mit Chloroform versetzt, bis eine klare Lösung entstand und 3mal mit Wasser gewaschen. Nach dem Trocknen und Eindampfen der Chloroformphase wurde ein kristalliner Rückstand erhalten, der aus Methanol umkristallisiert wurde: 27,7 g (70%) 24, Smp. 136-139°. – IR. (Nujol): kein NH; 3265 (\equiv C-H). – ¹H-NMR. (CDCl₃): 7,6-7,1 (m, 15 arom. H, Tritylgruppe); 7,1-6,5 (m, 5 arom. H); 4,17 (d, J(1',3')=2, 2 H, 2 H-C(1')); 2,06 (t, 1 H, H-C(3')). – MS: 325 (M⁺, nicht erkennbar), 243 ((C₆H₅)₃C⁺, 52), 165 (21), 133 (20), 131 (12), 130 (20), 118 (41), 98 (100).

1.2.2. N-(4', 4', 4'-Trideuterio-2'-butinyl)anilin (d_3 -25). In 200 ml flüssigen Ammoniak wurden 1.02 g (44,3 mmol) Na gegeben und mit Fe(NO₃)₃ die Amidbildung katalysiert. Nach 45 Min. wurden 12,0 g (36,9 mmol) Tritylanilin 24 portionsweise eingetragen. Nach weiteren 20 Min. wurden 6,4 g (44,3 mmol) Trideuteriomethyljodid (*Roth AG*, Karlsruhe; D-Gehalt 99%) zugesetzt und 2,5 Std. bei – 33° gerührt. Der Ammoniak wurde abgetrieben und der Rückstand mit wenig Wasser versetzt. Dann wurden zur Entfernung der Tritylgruppe 200 ml 50proz. Essigsäure zugegeben und 30 Min. unter Rückfluss gekocht. Das Triphenylmethanol wurde in der Kälte abfiltriert, mit 50proz. Essigsäure gewaschen und das Filtrat mit 50proz. NaOH-Lösung alkalisch gestellt. Das isolierte Anilingemisch (3,3 g) bestand laut GC. aus 65% d₃-25, 27,5% *N*-(2'-Propinyl)anilin und einer Reihe weiterer, nicht identifizierter Produkte. Bei der Säulenchromatographie (Kieselgel, Ligroin/Methanol/Äther 12:1:1 (ν/ν)) wurde d₃-25 zuerst eluiert. KR.-Destillation bei 110-120°/11 Torr ergab 2,86 g (52%) d₃-25 (Reinheit laut GC. 92%). – IR.: 3400 (NH), 2245 (C≡C), 2112/2061 (CD₃), 1600/1500 (Ar), 750/692 (5 benachbarte arom. H). – ¹H-NMR: 7,3-6,3 (*m*, 5 arom. H); 3,73 (*s*, 2 H, 2 H–C(1')); 3,61 (br. *s*, 1 H, HN); im Bereich von 2,0-1,6³⁵) liessen sich keine H-Signale integrieren. – MS.³⁶): 148 (M^+ , 54), 147 (100), 146 (22). – Die Verbrennungsanalyse ergab 3,00 D/Molckel.

$C_{10}H_8D_3N$ (148,18) Ber. H 5,44% Gef. H 5,23%

1.2.3. (E)-N-(4', 4', 4'-Trideuterio-2'-butenyl)anilin ((E)-d_3-55). Zu einer Suspension von 1,26 g (33,1 mmol) LiAlH₄ in 7 ml Tetrahydrofuran (THF) wurden unter Rühren 2,9 g (19,6 mmol) d_3 -25 in 13 ml THF getropft. Nach 6,5std. Kochen unter Rückfluss wurde gekühlt, mit Eiswasser versetzt und wie üblich aufgearbeitet. KR.-Destillation bei 115°/11 Torr ergab 2,6 g (88%) (E)-d_3-55 (Reinheit laut GC. 92%). Eine Probe wurde durch präp. DC. (Kieselgel, Ligroin/Methanol/Äther 12:1:1) gereinigt. – IR.: 3400 (NH), 2218/2200/2120/2060 (CD₃), 1599/1502 (Ar), 970 (CH=CH,

³⁵) Im ¹H-NMR. von **25** erscheint H-C(1') bei 3,73 (qa) und H-C(4') bei 1,74 (t) [7].

³⁶) MS. von 25: 145 (M^+ , 100), 144 (75), 143 (16) [7].

trans), 748/690 (5 benachbarte arom. H). - ¹H-NMR.: 7,2-6,2 (*m*, 5 arom. H); 5,9-5,2 (*ABX*-System, $J(A,B) \approx 14$, 2 H, H-C(2') und H-C(3')); 3,8-3,3 (*m*, 2 H, 2 H-C(1')); 3,37 (br. *s*, 1 H, HN); im Bereich von 1,7³⁷) liessen sich keine Signale für H-C(4') integrieren. - MS.: 150 (*M*⁺, 100), 149 (37), 134 (18), 132 (62), 120 (38), 106 (28), 94 (34), 91 (14), 77 (15), 58 (15). - Die Verbrennungsanalyse ergab 2,93D/Molekel.

C₁₀H₁₀D₃N (150,20) Ber. H 6,71% Gef. H 6,59%

1.2.4. (Z)-N-(4', 4', 4'-Trideuterio-2'-butenyl)anilin ((Z)- d_3 -55). Eine Lösung von 2,86 g (19,3 mmol) d_3 -25 in 100 ml Hexan wurde über 500 mg Lindlar-Katalysator 12 Std. hydriert. Die H₂-Aufnahme betrug 1,04 Moläquiv. Es wurden nach KR.-Destillation bei 115°/11 Torr 2,52 g (87%) (Z)- d_3 -55 erhalten (Reinheit laut GC. 94%). Die Verbindung wurde ohne weitere Reinigung umgesetzt. Charakterisierung von (Z)-55 siehe [7].

1.2.5. 2-(1'-(Trideuteriomethyl)allyl)anilin (d_3 -21) aus (E)- d_3 -55. Ein Gemisch von 1,2 g (8,0 mmol) (E)- d_3 -55 und 17 ml 0,5 N Schwefelsäure wurde im Bombenrohr 65 Min. auf 165° erhitzt. Die Aufarbeitung ergab ein Anilingemisch (1,2 g) aus 3,9% Anilin, 63,6% d_3 -21, 11,1% (E)- d_3 -55 und 13 in kleineren Mengen auftretenden Nebenprodukten (vgl. [7]; GC.). Säulenchromatographie (Kieselgel Ligroin/Methanol/Äther 12:1:1) ergab als erste Fraktion 100 mg (8%) (E)- d_3 -55 und als zweite 550 mg (46%) d_3 -21 (Reinheit laut GC. 92%). – IR.: 3442/3370 (NH₂), 3079 (=CH₂), 2212 (CD₃), 1620, 1582/1496 (Ar), 1002/920 (CH=CH₂), 752 (4 benachbarte arom. H). – ¹H-NMR.: 7,2-6,3 (*m*, 4 arom. H); 5,90 ($d \times d \times d$, 1 H, H–C(2')); 5,2-4,7 (*m*, 2 H, 2 H–C(3')); 3,57 (*d*, J(1',2')=5,5, 1 H, H–C(1')); 3,41 (br. s, 2 H, H₂N); im Bereich von 1,3 (H₃C–C(1'); vgl. [7]) liessen sich keine Signale integrieren. – MS.: 150 (M^+ , 100), 135 (41), 132 (65), 117 (23), 105 (22), 92 (26), 91 (38), 57 (24).

1.2.6. 2-(l'-Trideuteriomethylallyl)anilin (d_3 -21) aus (Z)- d_3 -55. Ein Gemisch von 2,5 g (16,6 mmol) (Z)- d_3 -55 und 34 ml 0,5N Schwefelsäure wurde im Bombenrohr 70 Min. auf 165° erhitzt. Die Aufarbeitung ergab ein Anilingemisch (2,35 g) aus 66,5% d_3 -21, 0,8% (Z)- d_3 -55, 6,3% hydratisierter Umlagerungsprodukte (vgl. [7]) und einer Vielzahl von Nebenprodukten in kleineren Mengen (GC.). Die weitere Reinigung erfolgte durch Säulenchromatographie (1.2.5), wobei 1,46 g (58%) d_3 -21 in einer Reinheit von 93% (GC.) erhalten wurden. Die Verbindung, die im GC. und DC. mit 21 [7] und d_3 -21 aus 1.2.5 verglichen wurde, wurde sofort weiter umgesetzt.

1.2.7. Methylierung von d₃-21 zu d₃-15 (vgl. [30]). Zu 1,46 g (9,7 mmol) d₃-21 wurden 2,84 g (13,5 mmol) Trifluoressigsäureanhydrid getropft. Das Gemisch wurde 2 Std. bei RT. stehengelassen und dann im RV. eingedampft. Zum kristallinen Rückstand wurden 10 ml CCl4 gegeben und nochmals zur Trockne eingedampft. Umkristallisation aus Ligroin ergab 1,72 g (72%) des Trifluoracetamids (Smp. 77-78°), das, in 11 ml Aceton gelöst, mit 4,07 g (28,7 mmol) Methyljodid und 1,61 g (28,7 mmol) gepulvertem Kaliumhydroxid 4,5 Min. unter Rückfluss gekocht wurde. Danach wurde im RV. eingedampft, mit 7,3 ml Wasser versetzt und 1,5 Std. unter Rückfluss gekocht. Die Aufarbeitung lieferte 1,5 g Gemisch aus 67,5% d₃-15 und 29% der nicht hydrolysierten Trifluoracetylverbindung von d₃-15, welche durch Säulenchromatographie (Kieselgel, Ligroin/Methanol/Äther 12:1:1) getrennt wurden. Zuerst wurden 850 mg (74%) d₃-15 in einer Reinheit von 98,5% (GC.) erhalten, dann 420 mg (24%) Trifluoracetylverbindung von d_3 -15. d_3 -15: IR.: 3432 (NH), 3078 (=CH₂), 2818 (CH₃N), 2230 (CD₃), 1638 (C=C), 1605/1586/1521 (Ar), 1000/920 (CH=CH₂), 752 (4 benachbarte arom. H). -¹H-NMR.: 7,2-6,3 (m, 4 arom. H); 5,91 ($d \times d \times d$, 1 H, H-C(2')); 5,2-4,8 (m, 2 H, 2 H-C(3')); 3,94 (br. s, 1 H, HN); 3,34 (d, 1 H, H-C(1')); 2,78 (s, 3 H, CH_3N); im Bereich von 1,36 ($H_3C-C(1')$) liessen sich weniger als 0,2-0,3 H integrieren. - MS.: 164 (M⁺, 84), 149 (77), 100 (51), 98 (40), 92 (79), 91 (100), 83 (49), 71 (81), 70 (69), 57 (72), 56 (61), 55 (46), 43 (94), 41 (58). - Die Verbrennungsanalyse ergab 2,96 D/Molekel.

$C_{11}H_{12}D_3N$ (164,22) Ber. H 7,37% Gef. H 7,39%

Trifluoracetylverbindung von d₃-15: IR.: 3090 (=CH₂), 2218 (CD₃), 1701 (COCF₃), 1640 (C=C), 1608/1581/1494 (Ar), 1225/1210/1160 (CF₃), 1010 (strukturiert)/928 (CH=CH₂), 762 (4 benachbarte arom. H). - ¹H-NMR. 7,5-6,9 (m, 4 arom. H); 5,93 ($d \times d \times d$, 1 H, H-C(2')); 5,3-4,6 (m, 2 H, 2 H-C(3')); 3,53 (d, 1 H, H-C(1')); 3,20, 3,29 (je 1 s, zusammen 3 H, CH₃N); im Bereich von 1,6-1,2 liessen sich <0,2 H für H₃C-C(1') integrieren. - MS.: 260 (M^+ , 26), 202 (38), 191 (32), 174 (18), 163 (91), 159 (25), 148 (51), 131 (23), 120 (23), 105 (38), 92 (73), 91 (100).

³⁷) Im ¹H-NMR. von (E)-55 erscheint H–C(4') bei 1,69 (d mit Feinstr.) [7].

1.3. Synthese von 2-(1'-Äthylallyl)anilin (16). 1.3.1. N-(2'-Pentenyl)anilin (56). Ein Gemisch von 49,0 g (0,53 mol) Anilin, 59,8 g (0,56 mol) Natriumcarbonat und 55 g (0,53 mol) 1-Chlor-2-penten/ 3-Chlor-1-penten (hergestellt nach [31]) wurde in 800 ml Äthanol 24 Std. unter Rückfluss gekocht. Aufarbeitung (vgl. [7]) und Destillation an einer Spaltrohrkolonne (*Fischer*, Typ HMS 500) lieferten bei 110-114°/12 Torr 10,5 g (12%) N-(1'-Äthylallyl)anilin in einer Reinheit (GC.) von 88,5% sowie bei 131-132°/12 Torr 30,0 g (35%) 56 in einer Reinheit (GC.) von 95,0%. N-(1'-Äthylallyl)anilin: IR.: 3402 (NH), 3087 (=CH₂), 1602/1501 (Ar), 998/920 (CH=CH₂), 750/693 (5 benachbarte arom. H). - ¹H-NMR.: 7,2-6,3 (m, 5 arom. H); 5,73 ($d \times d \times d$, 1 H, H-C(2')); 5,3-4,9 (m, 2 H, 2 H-C(3')); 3,67 (qa, 1 H, H-C(1')); 3,40 (br. s, 1 H, HN); 1,9-1,1 (m, 2 H, CH₃CH₂); 0,96 (t mit Feinstr., 3 H, CH₃CH₂). - MS.: 161 (M^+ , 21), 132 (100), 117 (13), 93 (40), 77 (10), 66 (10).

C₁₁H₁₅N (161,25) Ber. C 81,94 H 9,38 N 8,69% Gef. C 81,73 H 9,46 N 8,62%

56: IR.: 3400 (NH), 3042 (=CH₂), 1600/1500 (Ar), 970 (CH=CH, *trans*)³⁸), 748/691 (5 benachbarte arom. H). - ¹H-NMR.: 7,2-6,2 (*m*, 5 arom. H); 6,0-5,2 (symmetr. *m*, 2 H, H-C(2') und H-C(3')); 3,60 (*d* mit Feinstr., 2 H, 2 H-C(1')); 3,40 (br. *s*, 1 H, HN); 2,01 (*qi*-artiges *m*, 2 H, 2 H-C(4')); 0,97 (*t*, 3 H, 3 H-C(5')). - MS.: 161 (M^+ , 93), 132 (65), 106 (28), 93 (100), 27 (38).

C11H15N (161,25) Ber. C 81,94 H 9,38 N 8,68% Gef. C 82,13 H 9,50 N 8,84%

1.3.2. Säurekatalysierte Umlagerung von 56. Ein Gemisch von 3,0 g (18,6 mmol) 56 und 12 ml 2N Schwefelsäure wurde im Bombenrohr 80 Min. auf 175° erhitzt. Die Aufarbeitung ergab ein Gemisch (2,5 g) aus 39,2% 16, 37,7% Indolin 37 und mehreren Nebenprodukten in kleineren Mengen (GC.). Die weitere Reinigung erfolgte durch Säulenchromatographie (Kieselgel, Toluol/ Methylenchlorid 2:1). Zuerst wurden 460 mg (19%) 16 in einer Reinheit (GC.) von 92% isoliert. Eine zweite Fraktion (370 mg; 15%) bestand aus einem Gemisch von 92,6% trans- und 5,4% cis-37 (GC.). 16: UV. (Methanol): Max. 286 (2400), 238 (8000); Min. 261 (750). – IR.: 3450/3375 (NH₂), 3072 (=CH₂), 1622/1582/1498 (Ar), 1000/920 (CH=CH₂), 752 (4 benachbarte arom. H). – ¹H-NMR.: 7,3-6,3 (m, 4 arom. H); 5,84 ($d \times d \times d$, 1 H, H-C(2')); 5,2-4,8 (m, 2 H, 2 H-C(3')); 3,42 (br. s, 2 H, H₂N); 3,11 ($t \times d$, 1 H, H-C(1')); 2,1-1,4 (m, 2 H CH₃CH₂); 0,92 (t, 3 H, CH₃CH₂). – MS.: 161 (M^+ , 51), 146 (20), 132 (100), 117 (19).

C11H15N (161,25) Ber. C 81,94 H 9,38 N 8,68% Gef. C 81,66 H 9,55 N 8,61%

trans-3-Äthyl-2-methylindolin (trans-37): Gehalt an cis-Isomerem 5,4%, 2 Nebenprodukte von zusammen 2,0%; vgl. auch 2.3). – IR.: 3378 (NH), 1612/1489 (Ar), 753 (4 benachbarte arom. H). – ¹H-NMR.: 7,1-6,3 (m, 4 arom. H); 3,51 ($qa \times d$, $J(2,CH_3) \approx J(2,3) \approx 6$, 1 H, H-C(2)); 3,43 (s, 1 H, HN); 2,66 ($t \times d$, $J(3,CH_2) \approx J(3,2) \approx 6$. 1 H. H-C(3)); 1,9-1,4 (m, 2 H, CH₃CH₂); 1,20 (d, 3 H, H₃C-C(2)); 0,97 (t mit Feinstr., 3 H, CH₃CH₂). – MS.: 161 (M^+ , 67), 146 (54), 132 (100), 118 (15), 117 (28), 92 (15), 91 (25).

C₁₁H₁₅N (161,25) Ber. C 81,94 H 9,38 N 8,68% Gef. C 81,86 H 9,55 N 8,47%

1.4. Synthese von 2-(1'-Methyl-2'-butenyl)anilin (19). 1.4.1. N-(1'-Methyl-2'-butenyl)anilin (28). Ein Gemisch aus 11,7 g (0,125 mol) Anilin, 14,3 g (0,134 mol) Natriumcarbonat und 13,1 g (0,125 mol) 3-Chlor-2-buten (hergestellt nach [31]) wurde in 200 ml Äthanol 24 Std. unter Rückfluss gekocht. Übliche Aufarbeitung (vgl. [7]) und Destillation bei 130-131°/23 Torr lieferten 8,6 g (42%) 28 in einer Reinheit (GC.) von 95%. – IR.: 3400 (NH), 1602/1505 (Ar), 971 (CH=CH, trans)³⁸). 752/698 (5 benachbarte arom. H). – ¹H-NMR.: 7,3-6,3 (m, 5 arom. H); 6,0-5,0 (m, 2 H, H-C(2') und H-C(3')); 3,87 ($qa \times d$, 1 H, H-C(1')); 3,34 (br. s, 1 H, HN); 1,66 (d, 3 H, 3 H-C(4')); 1,22 (d, 3 H, H₃C-C(1')). – MS.: 161 (M^+ , 59), 146 (100), 93 (82).

 $C_{11}H_{15}N(161,25)$ Ber. C 81,94 H 9,38 N 8,68% Gef. C 81,83 H 9,46 N 8,55%

1.4.2. Säurekatalysierte Umlagerung von 28. Ein Gemisch von 4,0 g (24,8 mmol) 28 und 160 ml 0,2N Schwefelsäure wurde 7 Std. unter Rückfluss gekocht. Übliche Aufarbeitung ergab 3,8 g Gemisch aus 11% Anilin, 1,2% 28, 6,8% (Z)-19, 60,9% (E)-19, 14,3% 4-(1'-Methyl-2'-butenyl)anilin (29) und mehreren Nebenprodukten in kleineren Mengen (GC.). Die weitere Reinigung von 1,5 g des Gemisches

³⁸) Aufgrund dieser vergleichsweise intensiven Bande muss es sich im wesentlichen um die Verbindung mit (E)-Konfiguration handeln.

erfolgte durch Säulenchromatographie (Kieselgel, Hexan mit Äthanol gesättigt). Die erste Fraktion (700 mg; 46%) bestand aus 5,3% (Z)- und 91,2% (E)-19 (GC.). Eine zweite Fraktion (350 mg; 23%) enthielt 29 in einer Reinheit (GC.) von 97%. (E)-19: UV. (Hexan): Max. 286 (2600), 235 (7500); Min. 262 (1200). – IR.: 3445/3365 (NH₂), 3062 (=CH₂), 1625/1585/1499 (Ar), 978 (CH=CH. *trans*). 754 (4 benachbarte arom. H). – ¹H-NMR.: 7,1-6,3 (m, 4 arom. H); 5,8-5,0 (m, 2 H, H-C(2') und H-C(3')); 3,43 (br. s, 2 H H₂N); 3,21 (*qi*-artiges m, 1 H, H-C(1')); 1,66 (d mit Feinstr., 3H. 3 H-C(4')); 1,33 (d, 3 H, H₃C-C(1')). – MS.: 161 (M^+ , 100), 146 (81), 132 (41), 131 (27), 120 (18), 91 (13), 43 (14), 28 (27).

C11H15N (161,25) Ber. C 81,94 H 9,38 N 8,68% Gef. C 81,93 H 9,52 N 8,66%

29: IR.: 3430/3350 (NH₂), 1620/1515 (Ar), 975 (CH=CH, *trans*)³⁸), 832 (2 benachbarte arom. H). – ¹H-NMR.: 7,0-6,3 (*AA'BB'*-System, 4 arom. H); 5,8-5,0 (*m*, 2 H, 2 H–C(2') und H–C(3')); 3,30 (br. *s*. 2 H, H₂N); 3,25 (*qi*-artiges *m*, 1 H, H–C(1')); 1,66 (*d* mit Feinstr., 3 H, 3 H–C(4')); 1,26 (*d*, 3 H, H₃C–C(1')). – MS.: 161 (M^+ , 14), 146 (100).

C11H15N (161,25) Ber. C 81,94 H 9,38 N 8,68% Gef. C 81,70 H 9,50 N 8,66%

1.5. Synthese von 2-(2'-Cyclohexenyl)-N-methylanilin (18; vgl. [32]). 1.5.1. N-(2'-Cyclohexenyl)anilin (57): Ein Gemisch von 23,2 g (0,25 mol) Anilin, 40,0 g (0,25 mol) 3-Bromcyclohexen (hergestellt nach [33]) und 28,1 g (0,27 mol) Natriumcarbonat wurde in 500 ml Äthanol 21 Std. unter Rückfluss gekocht. Übliche Aufarbeitung und Destillation bei 146-148°/10 Torr lieferten 14.3 g (33%) 57 in einer Reinheit von 99% (GC.). - IR.: 3400 (NH), 1600/1500 (Ar), 750/694 (5 benachbarte arom. H). - 1 H-NMR.: 7,2-6,3 (*m*, 5 arom. H); 5,73 (br. *s* mit Satellitensignalen, 2 H, H-C(2') und H-C(3')); 3,92 (br. *s*, 1 H, H-C(1')); 3,40 (br. *s*, 1 H, HN); 2,2-1,3 (*m*, 6 H, 2 H-C(4'), 2 H-C(5'), 2 H-C(6')). - MS.: 173 (*M*⁺, 75), 145 (42), 93 (100), 81 (26).

C₁₂H₁₅N (173,26) Ber. C 83,13 H 8,73 N 8,08% Gef. C 82,90 H 8,90 N 7,94%

1.5.2. Säurekatalysierte Umlagerung von 57 (vgl. [32]). Ein Gemisch von 7,0 g (40 mmol) 57 und 100 ml 2_N Schwefelsäure wurde 5 Std. unter Rückfluss gekocht. Übliche Aufarbeitung lieferte 5,9 g Gemisch aus 16,2% 57, 54,3% 2-(2'-Cyclohexenyl)anilin (23) und 28,4% Anilin. Säulenchromatographie (Kieselgel, Toluol) und Destillation bei 180-185°/10 Torr ergaben 2,7 g (39%) 23 in einer Reinheit von 95% (GC.). – IR.: 3435/3375 (NH₂), 1625/1580/1492 (Ar), 750 (4 benachbarte arom. H). – ¹H-NMR.: 7,2-6,3 (m, 4 arom. H); 6,1-5,5 (m, 2 H, H-C(2') und H-C(3')); 3,50 (br. s, 2 H, H₂N); 3,32 (br. s, 1 H, H-C(1')); 2,4-1,3 (m, 6 H, 2 H-C(4')), 2 H-C(5'). 2 H-C(6')). – MS.: 173 (M^+ , 2), 134 (38), 120 (60), 119 (69), 105 (100), 92 (64), 91 (99).

C₁₂H₁₅N (173,26) Ber. C 83,19 H 8,73 N 8,08% Gef. C 83,59 H 8,80 N 7,85%

1.5.3. Methylierung von 23. Wie bisher beschrieben (1.2.7) wurden 1,64 g der Trifluoracetylverbindung von 23 (hergestellt in Analogie zu 1.2.7, Smp. 111° (Ligroin)) methyliert und hydrolysiert. Da die Trifluoracetylverbindung von 18 bei letzterem Reaktionsschritt nicht vollständig hydrolysiert wurde, wurde hier mit NaBH₄ in Äthanol bei RT. (48 Std.) gerührt, was zu einer vollständigen Abspaltung der Trifluoracetylgruppe führte. Destillation (KR.) bei 150-160°/10 Torr ergab 790 mg (69%) 18 in einer Reinheit von 95%. – UV. (Methanol): Max. 293 (2500), 245 (9700); Min. 269 (950). – IR.: 3435 (NH), 2810 (CH₃N), 1602/1583/1508 (Ar), 752 (4 benachbarte arom. H). – ¹H-NMR: 7,2-6,3 (m, 4 arom. H); 6,1-5,4 (m, 2 H, H-C(2') und H-C(3')); 3,56 (br. s, 1H, HN); 3,29 (br. s, 1 H, H-C(1')); 2,79 (s, 3 H, CH₃N); 2,3-1,3 (m, 6 H, 2 H-C(4'), 2 H-C(5') und 2 H-C(6')). – MS.: 201 (M^+ , 3), 187 (100), 172 (31), 168 (38), 144 (38), 133 (27), 132 (36), 130 (23), 117 (37), 92 (74), 91 (99).

C₁₃H₁₇N (187,29) Ber. C 83,37 H 9,15 N 7,48% Gef. C 82,91 H 9,26 N 7,31%

1.6. Synthese von N, 3,5-Trimethyl-2-(1'-methylallyl)anilin (17). 1.6.1. N-(2'-Butenyl)-3,5-dimethylanilin (26). Ein Gemisch von 80 g (0,66 mol) 3,5-Dimethylanilin, 59,8 g (0,66 mol) 1-Chlor-2-buten und 106 g (0,66 mol) Natriumcarbonat wurde in 280 ml Äthanol und 75 ml Wasser 24 Std. unter Rückfluss gekocht. Übliche Aufarbeitung und Destillation bei 125-148°/10 Torr lieferten 50,9 g 26 in einer Reinheit (GC.) von ca. 75%. Die weitere Reinigung von 26 erfolgte durch 2maliges Umkristallisieren (Äthanol/Äther) seines Hydrochlorids (hergestellt nach [7]; Smp. 178-180°). Nach dessen Zerlegung mit verdünnter NaOH-Lösung und Destillation bei 145°/10 Torr wurden 31 g

2605

(27%) **26** in einer Reinheit (GC.) von 98% erhalten. – IR.: 3410 (NH), 1601/1510 (Ar), 970 (CH=CH, *trans*)³⁸), 825 (isoliertes arom. H). – ¹H-NMR.: 6,21 (*s*, 1 H, H–C(4)); 6,06 (*s*, 2 H, H–C(2) und H–C(6)); 6,0–5,2 (*m*, 2 H, H–C(2') und H–C(3')); 3,7–3,5 (*m*, 2 H, 2 H–C(1')); 1,67 (*d* mit Feinstr., 3 H, 3 H–C(4')). – MS.: 175 (M^+ , 66), 160 (23), 134 (19), 121 (20), 58 (69), 43 (100).

C₁₂H₁₇N (175,28) Ber. C 82,23 H 9,77 N 7,99% Gef. C 81,96 H 9,87 N 7,88%

1.6.2. Säurekatalysierte Umlagerung von 26. Ein Gemisch von 20 g (0,11 mol) 26 und 200 ml 0,5 N Schwefelsäure wurde 53 Std. unter Rückfluss gekocht. Übliche Aufarbeitung lieferte 19,8 g Gemisch aus 6,6% 3,5-Dimethylanilin, 24,1% 2-(1'-Methylallyl)-3,5-dimethylanilin (22), 53,8% 26 und 12,8% 4-(2'-Butenyl)-3,5-dimethylanilin (27). Die weitere Reinigung erfolgte durch Säulenchromatographie (Kieselgel, Toluol/Methylenchlorid 3:1). Als erste Fraktion wurden 9 g (45%) 26 erhalten. Eine zweite Fraktion bestand aus 4,5 g (23%) 22 (KR.-Sdp. 160°/12 Torr) in einer Reinheit von 99% (GC.). Die dritte Fraktion enthielt 910 mg (5%) 27. 22: IR.: 3440/3360 (NH₂), 1610/1572/1490 (Ar), 1010/ 915 (CH=CH₂), 832 (isoliertes arom. H). - ¹H-NMR.: 6,29 (s, 1 H, H-C(4)); 6,09 (s, 1 H, H-C(6)); 6,4-5,8 (m, 1 H, H-C(2')); 5,4-4,9 (m, 2 H, 2 H-C(3')); 4,1-3,5 (m, 1 H, H-C(1')); 3,46 (br. s, 2 H, H₂N); 2,21 und 2,13 (je 1 s, je 3 H, H₃C-C(3) und H₃C-C(5)); 1,35 (d, 3 H, H₃C-C(1')). - MS.: 175 (M⁺, 42), 160 (42, 145 (20), 134 (29), 120 (34), 119 (50), 105 (71), 92 (68), 91 (100).

C₁₂H₁₇N (175,28) Ber. C 82,23 H 9,77 N 7,99% Gef. C 81,99 H 9,87 N 7,74%

27: Smp. 60-61° (Ligroin). - IR. (Nujol): 3410/3305 (NH₂), 1630/1610/1494 (Ar), 976 (CH=CH, *trans*)³⁸), 872/855 (isoliertes arom. H). - ¹H-NMR.: 6,20 (s, 2 H, H-C(2) und H-C(6)); 5,5-5,2 (m, 2 H, H-C(2') und H-C(3')); 3,18 (br. s, 2 H, H₂N); 3,3-3,0 (m, 2 H, 2 H-C(1')); 2,15 (s, 6 H, H₃C-C(3) und H₃C-C(5)); 1,61 (d mit Feinstr., 3 H, 3 H-C(4')). - MS.: 175 (M⁺, 100), 160 (73), 145 (34), 134 (42), 121 (19).

C₁₂H₁₇N (175,28) Ber. C 82,23 H 9,77 N 7,99% Gef. C 81,99 H 9,90 N 7,99%

1.6.3. Methylierung von 22 zu 17. Ein Gemisch von 4,5 g (25,6 mmol) 22, 3,65 g (25,6 mmol) Methyljodid und 4,0 g (28,9 mmol) Kaliumcarbonat wurde in 27 ml Aceton 30 Std. bei RT. gerührt. Übliche Aufarbeitung ergab 4,6 g Gemisch aus 21,7% 22 und 74,6% 17. Die weitere Reinigung erfolgte durch Säulenchromatographie (Kieselgel, Toluol/Methylenchlorid 3:1), wobei nach Destillation im KR. bei ca. 160°/12 Torr 1,42 g (29%) 17 in einer Reinheit (GC.) von 99% isoliert wurden. – UV. (Methanol): Max. 296 (2600), 249 (8100), 214 (27400); Min. 274 (1500), 232 (5500). – IR.: 3435 (NH), 2818 (CH₃N), 1636 (C=C), 1615/1588 (Ar), 982/920 (CH=CH₂), 832 (isolierte arm. H). – ¹H-NMR:: 6,23 (s, 1 H, H-C(4)); 6,13 (s, 1 H, H-C(6)); 6,4-5,8 (m, 1 H, H-C(2')); 5,3-4,9 (m, 2 H, 2 H-C(3')); 3,80 (br. s, 1 H, HN); 4,1-3,5 (m, 1 H, H-C(1')); 2,69 (s, 3 H, CH₃N); 2,20 (br. s, 6 H, H₃C-C(3) und H₃C-C(5)); 1,33 (d, 3 H, H₃C-C(1')). – MS.: 189 (M^+ , 59), 174 (100), 160 (32), 159 (72), 158 (34), 146 (14), 145 (18), 144 (16).

1.7. Synthese von 2-(2'-Butenyl)-N-methylanilin (20). Wie beschrieben (1.2.7) wurden 3,0 g (20,4 mmol) 2-(2'-Butenyl)anilin (hergestellt nach [7]) mit 5,9 g (28,0 mmol) Trifluoressigsäureanhydrid trifluoracetyliert (Ausbeute 70%). Eine Lösung von 3,45 g (14,2 mmol) der Trifluoracetylverbindung (Smp. 65-65,5° (Ligroin)) in 22 ml Aceton wurde mit 3,3 g (58,2 mmol) gepulvertem Kaliumhydroxid und 8,3 g (58,2 mmol) Methyljodid 4,5 Min. unter Rückfluss gekocht. Die übliche Aufarbeitung ergab 2,3 g Gemisch, welches durch Säulenchromatographie (Kieselgel, Ligroin/Methanol/Äther 12:1:1) aufgetrennt wurde. Nach KR.-Destillation wurden 1,1 g (48%) 20 in einer Reinheit von 99% (GC.) erhalten, welches aus 87,4% (E)- und 11,6% (Z)-Form bestand. – UV. (Methanol): Max. 291 (2680), 242 (9800); Min. 267 (1130). – IR.: 3420 (NH), 2810 (CH₃N), 1605/1585/1512 (Aromat), 975 (CH=CH, trans), 750 (4 benachbarte arom. H). – ¹H-NMR.: 7,2-6,3 (m, 4 arom. H); 5,8-5,0 (m, 2 H, H-C(2') und H-C(3')); 3,55 (br. s, 1 H, HN); 3,11 (schmales m, 2 H, 2 H-C(1')); 2,75 (s, 3 H, CH₃N); 182-1,57 (m, 3 H, 3 H-C(4')). – MS.: 161 (M^+ , 80), 146 (80), 132 (40), 131 (57), 130 (40), 120 (38), 118 (83), 91 (95), 69 (100).

C11H15N (161,25) Ber. C 81,94 H 9,38 N 8,68% Gef. C 81,98 H 9,40 N 8,69%

2. Bestrahlungen der 2-allylierten Aniline. – Alle präparativen Bestrahlungen erfolgten mit einer 150-W-Quecksilber-Hochdrucklampe (Typ TQ 150, *Quarzlampengesellschaft*, Hanau) in Quarzgefässen bei 15-20°. Die Lösungen ($c \approx 10^{-2}$ mol/l) wurden dabei mit Stickstoff gespült und der Umsatz mit GC. verfolgt. Analytische Bestrahlungen wurden in einer Karussell-Bestrahlungsapparatur (*Hans*

Mangels, Labor-Destillations-Technik, Bornheim) in Quarzröhrchen mit Teflonstäbchen unter magnetischer Durchmischung bei 15-20° ausgeführt. Die Lösungen waren dabei vorher mit Stickstoff begast worden.

2.1. Bestrahlung von 15. 2.1.1. In Methanol. Eine Lösung von 500 mg (3,10 mmol) 15 in 350 ml wasserfreiem Methanol ($c=8,86 \cdot 10^{-3}$ mol/l) wurde 2 Std. bestrahlt. Nach dem Abdestillieren des Methanols wurden 480 mg Gemisch erhalten, das aus 40,9% trans- und 4,9% cis-1,2,3-Trimethylindolin (trans- und cis-34), 29,8% erythro- und 14,0% threo-2-(2'-Methoxy-1'-methylpropyl)-N-methylanilin (erythro- und threo-35)⁵) sowie einer Reihe von Nebenprodukten (zusammen ca. 10%) bestand (GC.). Durch präp. DC. (Hexan/Äther 1:1) wurde das Gemisch in 200 mg 34 (70% trans- und 12% cis-Form, 18% nicht näher untersuchte Nebenprodukte; rasch wandernd) und 240 mg 35 (67% erythround 29% threo-Form, 4% Nebenprodukte; langsam wandernd) getrennt. Durch präp. DC. (Carbowax 20 M) wurden aus dem Indolingemisch trans-34 (kleinere Retentionszeit als cis-34; Gehalt an cis-Form 2%; 6% Nebenprodukte) und cis-34 (Gehalt an trans-Form 21%; 7% Nebenprodukte) gewonnen. erythro/threo-35 wurde ebenfalls durch präp. GC. (Hexakis(2-cyanoäthoxy)hexan) aufgetrennt, wobei ca. 60 mg threo-35 (kleinere Retentionszeit als erythro-Form) in 97% Reinheit (0,6% erythro-Form) und ca. 15 mg erythro-35 in 91% Reinheit (8% threo-Form) erhalten wurden. Alle Verbindungen wurden im KR. bei 12 Torr destilliert. trans-34: IR.: 2798 (CH₃N), 1608/1484 (Aromat), 748 (4 benachbarte arom. H). - 1 H-NMR.: 7,1-6,2 (m, 4 arom. H); 2,9-2,6 (m, 2 H, H-C(2) und H-C(3)); 2.63 (s, 3 H, CH₃N); 1,28 (d, 6 H, $J \approx 6$, H₃C-C(2) und H₃C-C(3)). - MS.: 161 (M^+ , 48), 146 (100), 144 (10), 131 (30).

cis-34: IR.: 2800 (CH₃N), 1601/1482 (Aromat), 752 (4 benachbarte arom. H). - ¹H-NMR.: 7,1-6,2 (*m*, 4 arom. H); 3,5-2,9 (*m*, 2 H, H-C(2) und H-C(3)); 2,63 (*s*, 3 H, CH₃N); 1,13 (*d*, 3 H, H₃C-C(3)); 1,07 (*d*, 3 H, H₃C-C(2)).

erythro-35: IR.: 3365 (NH), 2806 (CH₃N oder CH₃O), 1600/1582/1508 (Aromat), 1101 (C-O-C), 749 (4 benachbarte arom. H). - ¹H-NMR. (90 MHz, CCl₄; vgl. auch *Tab.2*): 7,1-6,4 (*m*, 4 arom. H); 4,49 (br. *s*, 1 H, HN); 3,43 ($d \times qa$, 1 H, J(2',1')=4,5, J(2',3')=6,0, H-C(2')); 3,29 (*s*, 3 H, CH₃O); 2,97 ($d \times qa$, 1 H, J(1',2')=4,5, $J(1',CH_3(1'))=7,2$, H-C(1')); 2,74 (*s*, 3 H, CH₃N); 1,21 (*d*, 3 H, $J(CH_3(1'),1')=7,2$, H₃C-C(1')); 0,91 (*d*, 3 H, J(3',2')=6,0, 3 H-C(3')). - MS.: 193 (M^+ , 41), 134 (M^+ - CH₃CH(OCH₃); 100), 119 (22), 58 (CH₃CH(OCH₃)+, 21), 42 (30).

C₁₂H₁₉NO (193,29) Ber. C 74,57 H 9,91 N 7,25% Gef. C 74,39 H 10,00 N 7,30%

threo-35: IR.: 3360 (NH), 2805 (CH₃N oder CH₃O), 1600/1580/1508 (Aromat), 1098 (C-O-C), 748 (4 benachbarte arom. H). - ¹H-NMR. (90 MHz, CCl₄; vgl. auch *Tab.2*): 7,1-6,4 (*m*, 4 arom. H); 4,40 (br. *s*, 1 H, HN); 3,28 ($d \times qa$, 1 H, J(2',1')=6,6, J(2',3')=6,2, H-C(2')); 3,14 (*s*, 3 H, CH₃O); 2,86 ($d \times qa$, 1 H, J(1',2')=6,6, $J(1',CH_3(1'))=6,9$, H-C(1')); 2,76 (*s*, 3 H, CH₃N); 1,20 (*d*, 3 H, $J(CH_3(1'),1')=6,9$, $H_3C-C(1')$); 1,07 (*d*, 3 H, J(3',2')=6,2, 3H-C(3')).

Dehydrierung von trans/cis-34 zu 1, 2, 3-Trimethylindol (36). Zu 250 mg (1,55 mmol) trans/cis-34 (aus der säurekatalysierten Umlagerung von 54; vgl. 1.1.2), bestehend aus 72,5% trans-, 25,6% cis-34 und 0,7% Indol 36, wurden 70 mg 10proz. Pd/C und 8 ml Xylol gegeben und das Gemisch unter Rückfluss gekocht. Laut GC. bestand das Gemisch nach 15 Min. aus 50,7% trans-34, 48,2% Indol 36 und <0,3% cis-34 und nach 14 Std. aus 98,8% Indol 36, 0,8% trans-34 und <0,4% cis-34. Der Katalysator wurde abfiltriert, mit Äther gewaschen und die Lösung im RV. eingedampft. Der Rückstand (230 mg) wurde im KR. bei 140-150°/10 Torr destilliert: 200 mg (81%) 36 in einer Reinheit von 99,7%. - IR.: 3050 (Aromat), 2860 (CH₃N), 1617, 1582, 1570, 1472, 1370 (Indol), 740 (4 benachbarte arom. H). - ¹H-NMR.: 7,6-6,7 (m, 4 arom. H); 3,38 (s, 3 H, CH₃N); 2,16 (s, 6 H, H₃C-C(2) und H₃C-C(2)). - MS.: 159 (M^+ , 100), 158 (93), 144 (41), 134 (24), 128 (45), 120 (30), 119 (41), 105 (23), 91 (24), 77 (21).

C₁₁H₁₃N (159,33) Ber. C 82,97 H 8,23 N 8,80% Gef. C 82,98 H 8,33 N 8,69%

Analog wurde trans/cis-34 aus 2.1.1 umgesetzt.

2.1.2. In O-Deuteriomethanol. Eine Lösung von 150 mg (0,93 mmol) 15 in 80 ml O-Deuteriomethanol (hergestellt analog zu [34]; $c = 1, 16 \cdot 10^{-2}$ mol/l) wurde 3 Std. bestrahlt. Das Rohgemisch (100 mg) bestand laut GC. aus 25,8% trans-, 2,7% cis-34, 9,0% 15, 17,5% threo- und 36,8% erythro-35 sowie 6 Nebenprodukten von insgesamt 8%. Die Auftrennung von erythro/threo-34 (40 mg) erfolgte wie unter 2.1.1. Das Indolingemisch (30 mg) wurde direkt wie unter 2.1.1 angegeben mit 10proz. Pd/C zu 36 dehydriert.

erythro-35 (0,9% threo-Form enthaltend): ¹H-NMR. (90 MHz, CCl₄): Bei ca. 1,20 (H₃C-C(1')) wurden durch Integration 3,0 H und bei ca. 0,90 (H-C(3')) 2,0 H gefunden (Gesamtintegral=5,0 H). - ²H-NMR.: Bei 0,91 wurden ca. 82% und bei 1,24 ca. 18% des Gesamtdeuteriumgehaltes gefunden.

threo-35 (2,2% *erythro*-Form enthaltend): ¹H-NMR. (90 MHz, CCl₄): Bei *ca.* 1,20 (H₃C-C(1')) wurden *ca.* 2,3 H und bei *ca.* 1,07 (H-C(3')) *ca.* 2,7 H gefunden (Gesamtintegral=5,0 H). - ²H-NMR.: Es wurde nur ein breites Signal bei 1,13 gefunden.

Das Indol **36** wurde durch präp. DC. (Benzol) gereinigt (12 mg). – ¹H-NMR. (90 MHz, Benzol): Im Bereich von 2,2 (H₃C-C(3)) wurden durch Integration 2,85 H und im Bereich von 1,9 (H₃C-C(2)) 2,46 H gefunden (Integrationsstandard CH₃N bei 2,91). Gesamt-D-Gehalt: 0,69 D. – ²H-NMR.: Signale bei 7,70, 7,33 und 1,94 im Verhältnis von 1:1:0,6.

2.2. Bestrahlung von d_3 -15. 2.2.1. In Methanol. Es wurden in zwei Ansätzen je 150 mg (0,91 mmol) d_3 -15 in je 80 ml wasserfreiem Methanol ($c = 1, 14 \cdot 10^{-2}$ mol/l) 1 Std. bestrahlt. Laut GC. betrug die Zusammensetzung des Gemisches danach (in Klammern 2. Versuch): 37,6 (38,3)% trans-, 6,3 (6,3)% cis-34, 0,3 (0,3)% d_3 -15, 12,4 (12,2)% threo-, 27,7 (27,4)% erythro-35 sowie eine Reihe weiterer Produkte von total 15,7 (15,5)%. Das Methanol wurde abdestilliert und der Rückstand (330 mg) wie beschrieben (2.1.1) mit präp. DC. in 140 mg (47%) Indoline d_3 -34 (66,2% trans-, 12,0% cis- d_3 -34, 2,5% d_3 -15, 3,1% Indol d_3 -36 sowie ca. 16% Nebenprodukte) und 140 mg (39%) Methanol-addukte d_3 -35 (31% threo- und 69% erythro- d_3 -35 (0,5% threo-Form enthaltend): Im ¹H-NMR. (90 MHz, CCl₄) ergab die Integration des Signalbereichs von H₃C-C(1') (1,21 ppm) und von H-C(3') (0,91 ppm) zusammen 3,10 H (Integrationsstandard arom. Protonen = 4,0 H), wovon 2,90 H auf den Bereich von H₃C-C(1') bei 1,28 ppm erkennbar.

*threo-*d₃-35 (4,0% *erythro*-Form enthaltend): Im ¹H-NMR. (90 MHz, CCl₄) ergab die Integration des Signalbereichs von $H_3C-C(1')$ (1,20 ppm) und von H-C(3') (1,07 ppm) zusammen 3,30 H (Integrationsstandard arom. Protonen=4,0 H), wovon 1,69 H (51%) auf den Bereich von $H_3C-C(1')$ und 1,61 H (49%) auf den Bereich von H-C(3') entfielen. - Im ²H-NMR. waren zwei gerade aufgelöste Signale bei 1,13 (D₃C-C(1')) und 1,04 ppm (D-C(3')) im Verhältnis von 49:51 erkennbar.

Deuteriertes 1, 2, 3-Trimethylindol (d₃-36) aus cis-d₃-34. trans/cis-d₃-34 (140 mg) wurde in 4 ml Xylol gelöst, mit 50 mg 10proz. Pd/C versetzt und 5 Min. unter Rückfluss gekocht. Danach war die Produkt-Zusammensetzung (GC.) 62,9% trans-d₃-34, 0,4% cis-d₃-34, 17,7% d₃-36 sowie 19% Nebenprodukte. Die Auftrennung durch präp. DC. (Toluol) ergab 90 mg trans-d₃-34 (kleinerer Rf; Reinheit laut GC. 82%; daneben 0,7% d₃-36) und 35 mg Indol d₃-36, (grösserer Rf), das nochmals durch präp. DC. (Hexan/CHCl₃ 2:1) gereinigt wurde: 20 mg d₃-36 in einer Reinheit von 96,5% (GC.; 5 Nebenprodukte). – ¹H-NMR. (90 MHz, Benzol): Integration (Standard CH₃N (2,91 ppm) = 3,0 H) der Signalbereiche von 2,2 ppm (H₃C-C(3)) und 1,9 ppm (H₃C-C(2)) ergab 0,47 bzw. 3,12 H. – ²H-NMR. (Benzol; vgl. Fig. 5): Es trat nur ein Signal bei 2,17 ppm (D₃C-C(3)) auf.

Deuteriertes 1,2,3-Trimethylindol (d_3 -36) aus trans- d_3 -34. Das bei der oben beschriebenen Dehydrierung zurückerhaltene trans-Indolin d_3 -34 (90 mg) wurde in 20 ml Benzol gelöst, mit 3,5 g Mangan(IV)oxid (pract., Fluka; nicht aktiviert) versetzt und 3,25 Std. unter Rückfluss gekocht. Danach ergab die GC.-Analyse 57% trans- d_3 -34, 14% d_3 -36 sowie 29% einer Vielzahl von Nebenprodukten. Durch präp. DC. (Hexan/CHCl₃ 2:1) wurden 10 mg d_3 -36 in einer Reinheit von 93% (GC.; 6 Nebenprodukte von total 7%) erhalten. – ¹H-NMR. (90 MHz, Benzol): Integration (Standard CH₃N (2,91 ppm)=3,0 H) der Signalbereiche von 2,2 ppm (H₃C-C(3)) und 1,9 ppm (H₃C-C(2)) ergab 0,31 bzw. 3,23 H. – ²H-NMR. (Benzol; vgl. Fig. 5): Es trat nur ein Signal bei 2,15 ppm (D₃C-C(3)) auf.

2.2.2. In Benzol. Es wurden 150 mg (0,91 mmol) d_3 -15 in 80 ml Benzol ($c = 1, 14 \cdot 10^{-2}$ mol/l) 1 Std. bestrahlt. Danach bestand das Gemisch laut GC. aus 1,0% d_3 -15, 68,3% *trans*- d_3 -34, 18,9% *cis*- d_3 -34 sowie einer Reihe von Nebenprodukten von zusammen 11,8%. Das Benzol wurde abdestilliert und der Rückstand (130 mg) wie nachstehend beschrieben weiter verarbeitet.

Deuteriertes 1, 2, 3-Trimethylindol (d_3 -36) aus cis- d_3 -34. Das Indolingemisch (130 mg) in 4 ml Xylol wurde mit 60 mg 10proz. Pd/C versetzt und 20 Min. unter Rückfluss gekocht. Danach bestand das Gemisch laut GC. aus <0,3% cis- d_3 -34, 69% trans- d_3 -34, 17,5% Indol d_3 -36 sowie 13,5% Neben-produkten. Das Indol 36 (20 mg; Reinheit 96%) wurde wie oben (2.2.1) vom trans-Indolin (80 mg, bestehend aus 92% trans- d_3 -34, <0,3% d_3 -36 und 7,8% Nebenprodukten) abgetrennt und NMR.spektroskopisch analysiert. – ¹H-NMR. (90 MHz, Benzol): Integration (Standard CH₃N (2,91 ppm)

= 3,0 H) der Signalbereiche von 2,2 ppm (H₃C-C(3)) und 1,9 ppm (H₃C-C(2)) ergab 0,56 bzw. 2,49 H. – ²H-NMR. (Benzol): Es traten zwei Signale (bei 2,15 und 1,84 ppm) im Verhältnis von 84:16 auf.

Deuteriertes 1,2,3-Trimethylindol (d_3 -36) aus trans- d_3 -34. Das obengenannte trans-Indolin (80 mg) wurde in 2 ml Xylol in Gegenwart von 100 mg 10proz. Pd/C 2 Std. unter Rückfluss gekocht. Danach bestand das Gemisch laut GC. aus 3% d_3 -34, 85% d_3 -36 und ca. 12% Nebenprodukten. Durch präp. DC. (Toluol) wurden 60 mg d_3 -36 rein erhalten. - ¹H-NMR. (90 MHz, Benzol): Integration (Standard CH₃N (2,91 ppm)=3,0 H) der Signalbereiche von 2,2 ppm (H₃C-C(3)) und 1,9 (H₃C-C(2)) ergab 2,99 bzw. 2,79 H. - ²H-NMR. (Benzol): Es traten schwache D-Signale bei 7,21, 2,91, 2,23 und 1,88 ppm auf, wobei das Verhältnis der letzten beiden Signale (78% in bezug auf die beiden erstgenannten) 66:34 betrug.

Bei einer Wiederholung der Bestrahlung von d_3-15 (150 mg) in Benzol ($c=1,14 \cdot 10^{-2}$ mol/l) wurden 0,3% d_3-15 , 68,2% *trans*- d_3-34 , 17,4% *cis*- d_3-34 und 14% Nebenprodukte erhalten. Nach dem Abdestillieren des Benzols blieben 150 mg Gemisch zurück.

Deuteriertes 1,2,3-Trimethylindol (d₃-36) aus cis-d₃-34. Das eben erwähnte Gemisch (150 mg) wurde in 4 ml Xylol in Gegenwart von 40 mg l0proz. Pd/C 28 Min. unter Rückfluss gekocht. Es wurden <0.3% cis-d₃-34, 68,3% trans-d₃-34, 16,4% d₃-36 und 15% Nebenprodukte erhalten. Wie beschrieben wurden 20 mg d₃-36 (97% rein) und 80 mg trans-d₃-34 (88% rein; 0,4% d₃-36, 0,5% cis-d₃-30 und 11% Nebenprodukte) isoliert. – ¹H-NMR. (90 MHz, Benzol): Integration (Standard CH₃N (2,91 ppm)=3,0 H) der Signalbereiche bei 2,2 ppm (H₃C-C(3)) und 1,9 ppm (H₃C-C(2)) ergab 0,46 bzw. 2,63 H. – ²H-NMR. (Benzol; vgl. Fig. 5): Es traten zwei Signale (bei 2,15 und 1,85 ppm) im Verhältnis von 86: 14 auf.

Deuteriertes 1, 2, 3-Trimethylindol (d_3 -36) aus trans- d_3 -34. Das oben erwähnte Indolin trans- d_3 -34 (80 mg) wurde in 40 ml Benzol in Gegenwart von 5,0 g Mangan(IV)oxid (pract., Fluka; nicht aktiviert) 230 Min. unter Rückfluss gekocht. Aus dem Gemisch, bestehend aus 45% trans- d_3 -34, 39% d_3 -36 und 16% Nebenprodukten, wurden durch präp. DC. (Toluol) 15 mg d_3 -36 isoliert. – ¹H-NMR. (90 MHz, Benzol): Integration (Standard CH₃N (2,91 ppm)=3,0 H) der Signalbereiche bei 2,2 ppm (H₃C-C(3)) und 1,9 ppm (H₃C-C(2)) ergab 0,48 bzw. 3,07 H. – ²H-NMR. (Benzol; vgl. Fig. 5): Es traten zwei Signale (bei 2,14 und 1,83 ppm) im Verhältnis von 88:12 auf.

2.3. Bestrahlung von 16 in Methanol. Eine Lösung von 1,30 g (8,06 mmol) 16³⁹) wurde 75 Min. in 600 ml wasserfreiem Methanol ($c = 1,34 \cdot 10^{-2}$ mol/l) bestrahlt. Nach dieser Zeit liessen sich mit GC. noch 14,8% 16 nachweisen. Die Produktzusammensetzung nach 45 Min. Bestrahlungsdauer war die folgende: 38,8% 16, 1,9% 19, 7,9% trans-37, 3,2% cis-37, 25,9% erythro-2-(1'-Äthyl-2'-methoxypropyl)anilin (erythro-39), 6,2% threo-39, 1,8% erythro-2-(2'-Methoxy-1'-methylbutyl)anilin (erythro-40). 1,4% threo-40 sowie 12,9% einer Vielzahl von nicht identifizierten Nebenprodukten⁴⁰). Der nach dem Abdestillieren des Methanols verbleibende Rückstand (1,41 g) wurde mit Toluol/Methylenchlorid/ Essigester 10:2:1 an 95 g Kieselgel chromatographiert. Nach einer Vorfraktion (490 mg, hauptsächlich 16, trans-37 und etwas 19; verworfen) wurden 70 mg trans-37 und danach 70 mg cis-37 erhalten. Darauf folgten Fraktionen (255 mg), die die Methanoladdukte 39 und 40 enthielten. Diese wurden durch präp. GC. (Hexakis(2-cyanoäthoxy)hexan) aufgetrennt. Die nur in kleinen Mengen vorliegenden Verbindungen erythro- und threo-40 wurden nur als Gemisch erhalten, trans-37 (Reinheit 90%; 7 nicht identifizierte Nebenprodukte): IR., ¹H-NMR. und MS. identisch mit den unter 1.3.2 beschriebenen. – ¹H-NMR. (90 MHz, CCl₄): Einstrahlen bei 1,20 ppm (H₃C-C(2)) $\rightarrow d$ (J(2,3) = 5,7, H-C(2)). Die Alternativstruktur eines trans-2-Äthyl-3-methylindolins liess sich durch Verschiebungsexperimente mit Eu(fod)⁴¹) ausschliessen: Das $qa \times d$ bei 3,51 ppm (H-C(2)) zeigte einen 1,7mal so grossen Verschiebungsgradienten wie das $t \times d$ bei 2,67 ppm (H–C(3)).

cis-37 (Reinheit 80%; 9 nicht identifizierte Nebenprodukte): IR.: 3380 (NH), 1610/1484 (Aromat), 746 (4 benachbarte arom. H). - ¹H-NMR. (60 und 90 MHz, CCl₄): 7,1-6,3 (m, 4 arom. H);

- ³⁹) Die GC.-Analyse vor der Bestrahlung ergab folgende Zusammensetzung: 93,2% 16, 3,1% 2-(1'-Methyl-2'-butenyl)anilin (19), 0,3% *trans*-3-Äthyl-2-methylindolin (*trans*-37) und 3,4% einer Reihe von Nebenprodukten.
- ⁴⁰) Nach 15 (30) Min. Bestrahlungsdauer ergab sich folgende Zusammensetzung: 63,7 (49,4)% 16, 2,4 (2,1)% 19, 4,6 (6,7)% trans-37, 1,9 (2,7)% cis-37, 12,8 (20,1)% erythro-39, 3,0 (4,7)% threo-39, 0,8 (1,3)% erythro-40, 0,6 (1,0)% threo-40 sowie 10,2 (12,0)% Nebenprodukte.
- ⁴¹) Tris(1,1,1,2,3,3,3-Heptafluor-7,7-dimethyl-4,6-octadionato)europium(III).

3,57 (s, 1 H, HN); 3,88 ($qa \times d$, $J(2, CH_3) \approx J(2, 3) \approx 7$, 1 H, H-C(2)); 2,90 ($t \times d$, $J(3, CH_2) \approx J(3, 2) \approx 7$, 1 H, H-C(3)); 1,50 ($qa \times d$, 2 H, CH_3CH_2); 1,09 (d, 3 H, $H_3C-C(2)$); 0,99 (t, 3 H, CH_3CH_2); Einstrahlen bei 1,09 ppm ($H_3C-C(2)$) $\rightarrow d$ (J(2,3)=7,7, H-C(2)). Die Alternativstruktur eines cis-2-Äthyl-3-methylindolins liess sich wiederum durch Verschiebungsexperimente mit Eu(fod)₃ ausschliessen: Das $qa \times d$ bei 3,88 ppm (H-C(2)) zeigte einen 1,8mal so grossen Verschiebungsgradienten wie das $t \times d$ bei 2,90 ppm (H-C(3)). - MS.: 161 (M^+ , 64), 159 ($M^+ - 2$ H, 77), 146 (54), 132 (100), 118 (31).

erythro-39 (2,3% threo-39 enthaltend): GC. (UCON-HB-Glaskapillarkolonne 160°): Retentionszeit(erythro-39)/Retentionszeit(threo-39) = 1,03. - ¹H-NMR. (90 und 100 MHz, CCl₄; alle Kopplungskonstanten und die δ -Werte von CH₃CH₂-C(1') aus simulierten Spektren): 7,1-6,4 (m, 4 arom. H); 3,86 (br. s, 2 H, H₂N); 3,45 (qa × d, J(2',3') = 6,1, J(2',1') = 5,0, 1 H, H-C(2')); 3,33 (s, 3 H, CH₃O); 2,79 (d×d×d, J(1',2') = 5,0, J(1',CH₂(A)) = 9,5. J(1',CH₂(B)) = 4,6, 1 H, H-C(1')); 1,79 und 1,64 (A- und B-Teil eines AB-Teilsystems, J(A, B) = -13,5, J(A,CH₃) = J(B,CH₃) = 7,0, CH₃CH₂); 0,96 (d, 3 H, 3 H-C(3')); 0,83 (t-artig, 3 H, CH₃CH₂). - MS. (GC./MS.-Kopplung): 193 (M⁺), 135 (M⁺ - 58 (CH₃OCH=CH₂)); 134 (M⁺ - 59 (CH₃CH(OCH₃)⁻)); 106 (M⁺ - 87 (CH₃CH(OCH₃)⁻) + C₂H₄))⁴²); 59 (CH₃CH(OCH₃)⁺); 32 (CH₃OH⁺).

threo-39 (5,1% erythro-39 enthaltend): ¹H-NMR. (90 und 100 MHz, CCl₄; alle Kopplungskonstanten und die δ -Werte von CH₃CH₂-C(1') aus simulierten Spektren): 7,0-6,4 (*m*, 4 arom. H); 4,21 (br. *s*, 2 H, H₂N); 3,33 (*qi*, J(2',3')=6,0, J(2',1')=6,0, 1 H, H-C(2')); 3,23 (*s*, 3 H, CH₃O); 2,55 ($d \times d \times d$, J(1',2')=6,0, J(1',CH₂(A))=9,5, J(1',CH₂(B))=5,0, 1 H, H-C(1')); 1,82 und 1,74 (A- und B-Teil des AB-Teilsystems, J(A, B)= - 13,5, J(A, CH₃)=J(B, CH₃)=7,0, CH₃CH₂); 1,04 (*d*, 3 H, 3 H-C(3')); 0,76 (*t*-artig, 3 H, CH₃CH₂). - MS. (GC./MS.-Kopplung): 193 (M^+), 135 (M^+ -58(CH₃OCH=CH₂)), 134 (M^+ -59(CH₃CH(OCH₃)·)), 106 (M^+ -87(CH₃CH(OCH₃)·)+C₂H₄))⁴², 59(CH₃CH(OCH₃)+), 32(CH₃OH⁺).

erythro-40 konnte nur im Gemisch mit threo-40 erhalten werden. (UCON-HB-Glaskapillarkolonne, 160°). Retentionszeit(erythro-40)/Retentionszeit(threo-40) = 1,05; im Vergleich zu erythro- und threo-39 besass erythro-40 die grössere Retentionszeit. - MS. (GC./MS.-Kopplung): 193 (M^+), 121 (M^+ - 72(CH₃OCH=CHCH₃)), 120 (M^+ - 73(C₂H₅CH(OCH₃)·)), 106 (M^+ - 87(CH₃OCH=CHCH₃) + CH₃)), 73(C₂H₅CH(OCH₃)⁺), 32(CH₃OH⁺).

threo-40: MS. (GC./MS.-Kopplung): 193 (M^+) , 121 $(M^+ - 72(CH_3OCH=CHCH_3))$, 120 $(M^+ - 73(C_2H_5CH(OCH_3)^{-}))$, 106 $(M^+ - 87(CH_3OCH=CHCH_3 + CH_3))$, 73 $(C_2H_5CH(OCH_3)^{+})$, 32 (CH_3OH^+) .

Dehydrierung von trans- und cis-37 zu 3-Äthyl-2-methylindol (38). In Gegenwart von 60 mg 10proz. Pd/C wurden 120 mg (0,74 mmol) cis/trans-37 in 5 ml Xylol unter Rückfluss gekocht. Die folgenden Produktzusammensetzungen beziehen sich auf eine Erhitzungsdauer von 0, von 1 und von 30 Min.: 36,5/<1/<1% cis-37, 55,0/49,2/23,8% trans-37, 2,9/44,7/71,2% Indol 38 und 5,6/6,1/5,0% Nebenprodukte. Nach dem Abdestillieren des Xylols wurde der Rückstand durch präp. DC. (CHCl₃/Hexan 2:1) gereinigt. Es wurden 70 mg 38 als gelbes Öl erhalten, das sich rasch zersetzte. – IR.: 3405 (NH), 3060 (arom. C–H), 1608 (Aromat), 742 (4 benachbarte arom. H). – ¹H-NMR.: 7,6-6,4 (m, 4 arom. H); ca. 3,9 (br. s, 1 H, HN); 2,64 (qa, J=7,5, 2 H, CH₃CH₂); 2,12 (s, 3 H, H₃C-C(2)); 1,16 (t, J=7,5, 3 H, CH₃CH₂).

2.4. Bestrahlung von 20 in Methanol. Eine Lösung von 207 mg (1,28 mmol) 20 (vgl. 1.7) in 100 ml wasserfreiem Methanol ($c = 1,28 \cdot 10^{-2}$ mol/1) wurde 75 Min. bestrahlt. GC.-Analysen wurden nach 20, 45 und 75 Min. ausgeführt: 23,2/12,6/9,7% trans-20, 16,5/6,5/4,0% cis-20, 36,9/48,5/50,0% 2-Äthyl-1-methylindolin (49) und 22,8/29,2/30,2% 2-(2'-Methoxybutyl)-N-methylanilin (50). Nach dem Abdestillieren des Methanols wurde der Rückstand durch präp. DC. (Hexan/Äther 4:1) in eine rasch wandernde Indolinfraktion (80 mg) und langsam wandernde Anilinfraktion (70 mg) aufgetrennt. Erstere wurde durch präp. DC. (Toluol/CH₂Cl₂ 3:1) und letztere durch präp. DC. (CH₂Cl₂) nochmals gereinigt. KR.-Destillation führte zu 49 in 94% Reinheit (7 Nebenprodukte in kleinen Mengen) und zu 50 in 98% Reinheit. 49: IR.: 2805 (CH₃N), 1612/1490 (Aromat), 755 (4 benachbarte arom. H). – ¹H-NMR. (90 MHz, CCl₄): 7,1-6,2 (m, 4 arom. H); 3,4-2,4 (m, 3 H, H-C(2) und 2 H-C(3)); 2,63 (s, 3 H, CH₃N); 2,1-1,1 (m, 2 H, CH₃CH₂); 0,91 (t, J=7,5, CH₃CH₂). - MS.: 161 (M^+ , 28), 133 (19), 132 (100), 117 (19), 91 (14).

50: IR.: 3370 (NH), 2808 (CH₃N), 1603/1586/1510 (Aromat), 1072 (C-O-C), 750 (4 benach-

⁴²) Oder (CH₃OCH=CH₂+C₂H₃).

barte arom. H). - ¹H-NMR. (90 MHz, CCl₄): 7,1-6,4 (*m*, 4 arom. H); 4,67 (br. *s*, 1 H, HN); 3,4-3,1 (*m*, 1 H, H-C(2')); 3,23 (*s*, 3 H, CH₃O); 2,8-2,4 (*m*, 2 H, 2 diastereotope H-C(3')); 0,93 (*t*, J(4',3')=7, 3 H, 3 H-C(4')). - MS.: 193 (M^+ , 49), 178 (13), 132 (24), 121 (23), 120 (100), 91 (16), 73 (47; CH₃OCHC₃H[‡]).

2.5. Bestrahlung von 17. Eine Lösung von 1,17 g (6,0 mmol) 17 in 300 ml wasserfreiem Methanol ($c = 2,0 \cdot 10^{-2} \text{ mol/l}$) wurde 90 Min. bestrahlt. Proben für die GC.-Analyse wurden nach 15, 45, 70 und 90 Min. entnommen: 47,1/10,7/3,5/1,5% 17, 42,5/71,6/78,5/79,0% cis-1,2,3,4,6-Pentamethylindolin (cis-41), 1,4/2,8/2,8/3,2% einer unbekannten Substanz, 3,8/6,7/7,0/7,5% erythro-2-(2'-Methoxy-I'-methylpropyl)-N-3, 5-trimethylanilin (erythro-43), 2,9/4,5/4,6/5,1% threo-43 sowie 2,3/3,7/3,6/ 3,7% mehrerer Nebenprodukte unbekannter Struktur. Die methanolische Lösung wurde eingedampft und der ölige Rückstand bei 150-170%10 Torr in KR. destilliert. Es wurden 930 mg eines gelben Öls der folgenden Zusammensetzung erhalten: 2,0% 17, 79,6% cis-41, 2,5% unbekanntes Produkt, 6,0% erythro-43, 4,5% threo-43 und 5,4% von mehreren Nebenprodukten. Das Indolin cis-41 erwies sich bei der Chromatographie an Kieselgel als sehr instabil. Es wurde deshalb durch präp. DC. (Toluol) nur eine Probe (20 mg) in 80proz. Reinheit isoliert. Der Rest des Gemisches (900 mg) wurde in 80 ml Xylol in Gegenwart von 300 mg 10proz. Pd/C 30 Min. unter Rückfluss gekocht. Danach bestand das Gemisch laut GC. aus 3% cis-41, 3,2% der unbekannten Substanz, 8,8% erythro-43, 6,5% threo-43, 5,1% Nebenprodukten sowie 73,4% 1,2,3,4,6-Pentamethylindol (42). Das Gemisch (900 mg) wurde an 80 g Kieselgel mit Toluol/Methylenchlorid 10:1 chromatographiert. Als erste Fraktion wurden 640 mg (57%) Indol 42, dann 30 mg Mischfraktion, die das unbekannte Produkt zu 50% enthielt, danach 70 mg (5,3%) erythro-43 (Reinheit laut GC. 90%; grössere Retentionszeit im Vergleich zu threo-43) und 60 mg (4,5%) threo-43 (Reinheit laut GC. 93%) isoliert. cis-41: IR.: 2790 (CH₃N), 1600 (Aromat), 823 (isoliertes arom. H). - ¹H-NMR.: (90 MHz, CCl₄); 6,22 (br. s, 1 H, H-C(5)); 6,00 (br. s, 1 H, H-C(7)); 3,3-2,6 (m, 2 H, H-C(2) und H-C(3)); 2,53 (s, 3 H, CH₃N); 2,17 (s, 3 H, H₃C-C(6)); 2,11 (s, 3 H, H₃C-C(4)); 1,18 (d, J=6.5, 3 H, $H_3C-C(2)$; 0.93 (d, J=6.5, $H_3C-C(3)$). - MS. (GC./MS.-Kopplung): 189 (M^+), 188, 187, 186, 172.

erythro-43: IR.: 3380 (NH), 2830 (CH₃N), 1615/1590/1472 (Aromat), 1090/1080 (CH₃-O-C); 831 (isoliertes arom. H). - ¹H-NMR. (90 MHz, CCl₄; vgl. auch *Tab.*2): 6,15 (br. *s*, 2 H, H-C(4) und H-C(6)); 5,60 (br. *s*, 1 H, HN); 3,53 ($qa \times d$, J(2',1')=J(2',3')=6,0, 1 H, H-C(2')); 3,36 (*s*, 3 H, CH₃O); 3,5-3,0 (*m*, 1 H, H-C(1')); 2,71 (*s*, 3 H, CH₃N); 2,16 (br. *s*, 6 H, H₃C-C(3) und H₃C-C(5)); 1,26 (*d*, $J(H_3C-C(1'), 1')=6,5, 3$ H, H₃C-C(1')); 0,96 (*d*, J(2',3')=6,0, 3 H, 3 H-C(3')). -MS. (40 eV): 221 (M^+ , 10), 162 (M^+ - CH₃CH(OCH₃)^{*}, 28), 147 (14), 119 (22), 105 (22), 58 (100).

threo-43: IR.: 3385 (NH), 2803 (CH₃N), 1612/1584/1470 (Aromat), 1086 (C–O–C), 830 (isoliertes arom. H). - ¹H-NMR. (90 MHz, CCl₄; vgl. auch *Tab.2*): 6,19 (br. *s*, 1 H, H–C(4)); 6,16 (br. *s*, 1 H, H–C(6)); 4,80 (br. *s*, 1 H, HN); 3,53 $(qa \times d, J(2',3')=J(2',1')=6,0, 1$ H, H–C(2')); 3,27 (*s*, 3 H, CH₃O); 3,2-2,9 (*m*, 1 H, H–C(1')); 2,74 (*s*, 3 H, CH₃N); 2,15 (br. *s*, 6 H, H₃C–C(3) und H₃C–C(5)); 1,23 (*d*, J(CH₃(1'),1')=7,0, 3 H, H₃C–C(1')); 1,06 (*d*, J(3',2')=6,0, 3 H, 3 H–C(3')). – MS. (30 eV): 221 (*M*⁺, 23), 174 (10), 162 (*M*⁺ – CH₃CH(OCH₃)[•], 100), 147 (25), 119 (10), 57 (13).

42: Das Indoi wurde aus Ligroin umkristallisiert, Smp. 140-141° (farblose Nadeln). - IR. (Nujol): 1615/1560 (Aromat), 832 (isoliertes arom. H). - ¹H-NMR. (CDCl₃): 6,76 (br. s, 1 H, H-C(5)); 6,57 (br. s, 1 H, H-C(7)); 3,40 (s, 3 H, CH₃N), 2,63 (s, 3 H, H₃C-C(6 oder 4)); 2,38 (s, 6 H, H₃C-C(4 oder 6) und H₃C-C(3)); 2,19 (s, 3 H, H₃C-C(2)). ¹H-NMR. (Benzol): 2,96 (s, 3 H, CH₃N); 2,71 und 2,49 (2 s, je 3 H, H₃C-C(4) und H₃C-C(6)); 2,40 (s, 3 H, H₃C-C(3)); 1,90 (s, 3 H, H₃C-C(2)). - MS.: 187 (M^+ , 100), 186 (63), 172 (31).

C₁₃H₁₇N (187,29) Ber. C 83,37 H 9,15 N 7,48% Gef. C 83,38 H 9,19 N 7,50%

2.6. Bestrahlung von 18. Eine Lösung von 250 mg (1,33 mmol) 18 in 80 ml wasserfreiem Methanol $(c=1,66\cdot10^{-2} \text{ mol/l})$ wurde 105 Min. bestrahlt. Danach ergab sich folgende Zusammensetzung: 2,9% 18. 26,2% cis- und 44,7% trans-9-Methyl-1,2,3,4,4a,9a-hexahydrocarbazol (cis- und trans-44)⁴³) sowie 23,3% 2-(Bicyclo[3.1.0]hex-6'exo-yl)-N-methylanilin (exo-45). Die Menge der nicht identifizierten Produkte (3) betrug zusammen 2,9%. Nach dem Abdestillieren des Methanols wurde das Rohprodukt (250 mg) durch präp. DC. (Toluol/Äther 9:1) in eine schnell laufende Fraktion (cis-44 und exo-45 enthaltend) und in eine langsam laufende Fraktion getrennt. Letztere war ein gelbliches Öl, das

⁴³) Bei kurzer Bestrahlungsdauer (< 30 Min.) wurde mehr cis- als trans-44 gebildet; bezüglich transund cis-44 vgl. [35].

erstarrte; es enthielt 88% trans-44, 3,3% cis-44 und 2,8% exo-45 sowie mehrere Nebenprodukte. Die schneller laufende Fraktion wurde durch 2malige präp. DC. (Hexan/Äther 20:1) wiederum in zwei Fraktionen getrennt, von denen die schneller wandernde aus 81% cis-44, 3% exo-45 und 7% 9-Methyl-1,2,3,4-tetrahydrocarbazol (46) sowie einer Vielzahl von Nebenprodukten bestand. cis-44 wurde nicht weiter gereinigt, da es schr leicht dehydriert wurde. Die langsamer wandernde Fraktion enthielt 82% exo-45 und 11,5% cis-44. Nach einer weiteren präp. DC. (Toluol/CH₂Cl₂ 3:1) wurde exo-45 in einer Reinheit von 89%, begleitet von 4% cis-44 sowie einer Vielzahl von Nebenprodukten von zusammen 7% erhalten. Beim Kochen in Xylol in Gegenwart von 10proz. Pd/C wurde cis-44 rasch und trans-44 langsam in das Tetrahydrocarbazol 46 übergeführt, das durch Chromatographie (Kieselgel, Toluol) aus beiden Ansätzen als gelbliches Öl isoliert wurde. cis-44: ¹H-NMR. (90 MHz, CCl₄): 7,1-6,3 (m, 4 arom. H); 3,3-2,7 (m, 2 H, H-C(4a) und H-C(9a)); 2,63 (s, 3 H, CH₃N); 2,0-1,1 (m, 8 H, 2 H-C(1), 2 H-C(2), 2 H-C(3), 2 H-C(4)). - MS. (GC./MS.-Kopplung): 187 (M^+), 185, 157, 144, 131, 130, 105.

trans-44: IR. (Nujol): 2850 (CH₃N), 1610/1475 (Aromat), 753 (4 benachbarte arom. H). – ¹H-NMR. (90 MHz, CCl₄): 7,2-6,3 (*m*, 4 arom. H); 3,4-2,7 (*m*, 2 H, H-C(4a) und H-C(9a)); 2,57 (*s*, 3 H, CH₃N); 2,5-1,1 (*m*, 8 H, 2 H-C(1), 2 H-C(2), 2 H-C(3), 2 H-C(4)). – MS.: (GC./ MS.-Kopplung): 187 (M^+), 186, 158, 157, 144, 131, 130, 115.

exo-45: IR.: 3440 (NH), 3030 (Aromat), 2818 (CH₃N), 1605/1583/1512 (Aromat), 1062/1048/1011 (Cyclopropan), 750 (4 benachbarte arom. H). - ¹H-NMR. (90 MHz, CCl₄): 7,1-6,3 (*m*, 4 arom. H); 3,87 (br. *s*, 1 H, HN); 2,87 (*s*, 3 H, CH₃N); 2,3-2,0 (*m*, keine Kopplung > 4, 1 H, H_{endo} -C(6')); 2,0-1,35 (*m*, 6 H, 2 H-C(2'), 2 H-C(3'), 2 H-C(4')); 1,26 (*d* mit Feinstr., $J \approx 4$, 2 H, H-C(1'), H-C(5')). - ¹³C-NMR. (25,2 MHz, CDCl₃): 148,0 (*s*, C(1)); 128,0 (*d*, C(3)); 127,0 (*d*, C(5)); 126,4 (*s*, C(2)); 117,0 (*d*, C(4)); 109,5 (*d*, C(6)); 30,6 (*qa*, CH₃N); 27,5 (*t*, C(2') und C(4')); 25,2 (*d*, C(1') und C(5')); 21,5 (*t*, C(3')); 19,0 (*d*, C(6')). - MS. (GC./MS.-Kopplung); 187 (*M*⁺), 172, 158, 145, 144, 143, 130, 120, 118.

Tetrahydrocarbazol **46**: IR.: 3045 (Aromat), 2842 (CH₃N), 1612/1600/1469 (Aromat), 737 (4 benachbarte arom. H). – ¹H-NMR. (90 MHz, CCl₄): 7,4–6,7 (*m*, 4 arom. H); 3,55 (*s*, 3 H, CH₃N); 2,9–2,5 (*m*, 4 H, 2 H–C(1), 2 H–C(4)); 2,1–1,7 (*m*, 4 H, 2 H–C(2), 2 H–C(3)).

2.7. Bestrahlung von 19. Orientierender Versuch: Eine Lösung von ca. 5 mg 19 in 5 ml Methanol wurde in einer Quarzküvette bestrahlt und parallel dazu der gleiche Versuch mit 16 angesetzt. Die Photoreaktion von 19 verlief wesentlich langsamer als die von 16. Neben der trans, cis-Isomerisierung von 19 wurde vor allem die Bildung zweier Produkte beobachtet (wahrscheinlich trans- und cis-2-Äthyl-3-methylindolin; vgl. hierzu [2]), die im GC. sehr ähnliche Retentionszeiten wie trans- und cis-37 besassen. Unter den nur in geringer Menge gebildeten Produkten mit grösserer Retentionszeit als 19 (methoxylierte Produkte) liessen sich aufgrund ihrer Retentionszeit erythro- und threo-39 nicht nachweisen (Nachweisbarkeitsgrenze ca. 0,5%). Die Lösung von 19 in Methanol färbte sich bei der Bestrahlung rasch gelb und dann braun.

2.8. Vergleichende Bestrahlung von 2-Allyl-N-methylanilin (30)⁴⁴), N-Methyl-2-(1'-methylallyl)anilin (15), 2-(2'-Butenyl)-N-methylanilin (20) und N-Methyl-2-(3'-methyl-2'-butenyl)anilin (58)⁴⁵) in Methanol. Die genannten Aniline wurden in wasserfreiem Methanol gelöst, so dass $E_{254}=0,311$ betrug. Von diesen Lösungen wurden jeweils 10 ml 1,5 Min. mit Stickstoff begast und dann in der Karussell-Bestrahlungsapparatur mit einer 15-W-Quecksilber-Niederdrucklampe durch ein Vycor-Filter bestrahlt. Zuvor waren der Lösung von 30 8 mg Tridecan, denjenigen von 15 und 20 8 mg Tetradecan und derjenigen von 58 8 mg Pentadecan als GC.-Standard zugesetzt worden. Die Lösungen wurden (%)/Reaktand (%)/Produkte (%)/Nebenprodukte (NP in %). Photolyse von 30: 0/44,2/54,8/<0,1/NP 1,0; 5/44,7/50,6/ 1,8⁴⁵/3,9/NP 1,2; 30/45/36,9/9,0/7,7/NP 1,4; 50/47,7/27,1/13,0/10,5/NP 1,7; 80/41,9/22,8/17,4/15,7/NP 2,2; 95/43,1/19,0/19,2/16,4/NP 2,3.

Photolyse von 15: 0/47,1/51,8/<0,1/NP 1,1; 5/48,5/49,4/0,2 (cis-34)/0,9 (trans-34)/<0,2 (erythro-35)/<0,2 (threo-35)/NP 1,0; 15/48,9/44,2/0,6/2,7/0,8/1,6/NP 1,2; 30/47,4/39,4/1,1/5,6/1,6/3,4/NP 1,5;

⁴⁴⁾ Siehe [1] [7]. UV. (Methanol): Max. 292 (2400), 243 (9500); Min. 267 (910).

⁴⁵) 2-(3'-Methyl-2'-butenyl)anilin [7] wurde via seine Trifluoracetylverbindung in üblicher Weise monomethyliert. UV. (Methanol): Max. 290 (2550), 241 (9300); Min. 266 (1230).

⁴⁶) 1,2-Dimethylindolin, siehe [1].

⁴⁷) 2-(2'-Methoxypropyl)-N-methylanilin, siehe [1].

50/49,3/31,0/1,7/8,5/2,4/5,1/NP 2,0; 80/48,7/25,9/2,2/10,8/3,3/6,8/NP 2,3; 95/50,7/21,7/2,4/11,9/3,5/7,0/ NP 2,8.

Photolyse von **20**: 0/43,9/48,6 ((*E*)-**20**)/5,9 ((*Z*)-**20**)/<0,1/NP 1,6; 5/43,8/47,2/7,0/0,8 (**49**)/<0,2 (**50**)/ NP 1,2; 15/43,5/43,1/8,4/2,2/1,0/NP 1,8; 30/43,6/37,7/10,4/4,2/2,0/NP 2,1; 50/43,7/32,1/12,2/6,6/3,0/ NP 2,4; 80/44,8/27,1/13,1/8,6/3,6/NP 2,8; 95/45,1/24,5/13,5/9,6/4,4/NP 2,9.

Photolyse von 58: Es wurde keine eindeutige Produktbildung beobachtet; 58 war wenig photoreaktiv. Nachfolgend wird nur die Abnahme in bezug auf den Standard und die Nebenproduktbildung angegeben: 0/54,9/42,7 (58)/NP 2,7; 5/54,3/43,1/NP 2,6; 15/54,0/41,4/NP 4,6; 30/54,0/41,2/ NP 4,8; 50/55,6/39,4/NP 5,0; 80/54,7/39,5/NP 5,8; 95/54,7/38,6/NP 6,7.

LITERATURVERZEICHNIS

- [1] U. Koch-Pomeranz, H. Schmid & H.-J. Hansen, Helv. 60, 768 (1977).
- [2] K. Krowicki, N. Paillous, M. Rivière & A. Lattes, J. heterocycl. Chemistry 13, 555 (1976); vgl. auch A. Lattes, 'Lectures in Heterocyclic Chemistry', Hetero Corporation, Orem (Utah) 1976, Vol.III, S. S-93.
- [3] D. Rehm & A. Weller, Ber. Bunsenges. physik. Chem. 73, 834 (1969).
- [4] E. Schmid, Gy. Fråter, H.-J. Hansen & H. Schmid, Helv. 55, 1625 (1972).
- [5] C.J. Lancelot, D.J. Cram & P.v.R. Schleyer, 'Carbenium Ions', Vol.III, herausgegeben von G.A. Olah und P.v.R. Schleyer, Wiley-Interscience, New York 1972, S. 1347ff.
- [6] A. Habich, R. Barner, W. V. Philipsborn & H. Schmid, Helv. 48, 1297 (1965); H.-J. Hansen, 'Mechanisms of Molecular Migrations', Vol.3, herausgegeben von B.S. Thyagarajan, Wiley-Interscience, New York 1971, S. 177ff.
- [7] S. Jolidon & H.-J. Hansen, Helv. 60, 978 (1977).
- [8] J. Borgulya, H.-J. Hansen, R. Barner & H. Schmid, Helv. 46, 2444 (1963).
- [9] M. Schmid, H.-J. Hansen & H. Schmid, Helv. 56, 105 (1973).
- [10] N. Takamatsu, S. Inoue & Y. Kishi, Tetrahedron Letters 1971, 4661.
- [11] J. Borgulya, R. Madeja, P. Fahrni, H.-J. Hansen, H. Schmid & R. Barner, Helv. 56, 14 (1973).
- [12] S. Jolidon & H.-J. Hansen, in Vorbereitung.
- [13] B.L. Kurbatov, F.I. Vilesov & A.N. Terenin, Soviet Physics-Doklady 6, 883 (1962); M.E. Akopyan & F.I. Vilesov, Dokl. Phys. Chemistry, Proc. Acad. Sci. USSR 158, 965 (1964).
- [14] G. Trinquier, N. Paillous, A. Lattes & J. P. Malrieu, Nouveau J. Chimie 1, 403 (1977).
- [15] H. Bader & H.-J. Hansen, Helv. 62, 2613 (1979).
- [16] S. Jolidon & H.-J. Hansen, unveröffentlichte Resultate.
- [17] H.E. Zimmerman, L.C. Roberts & R. Arnold, J. org. Chemistry 42, 621 (1977).
- [18] S. Farid, Chem. Commun. 1970, 303.
- [19] D.I. Schuster & C.J. Polowczyk, J. Amer. chem. Soc. 88, 1722 (1966); D.I. Schuster & I.S. Krull, ibid. 88, 3456 (1966); W.H. Pirkle & G.F. Koser, Tetrahedron Letters 1968, 129.
- [20] H.-J. Hansen, Helv. 60, 2007 (1977).
- [21] B. Scholl & H.-J. Hansen, unveröffentlichte Resultate.
- [22] T. Kitamura, T. Imagawa & M. Kawanisi, Tetrahedron 34, 3451 (1978).
- [23] S. Houry, S. Geresh & A. Shani, Israel J. Chemistry 11, 805 (1973); S. Geresh, O. Levy, Y. Markovits & A. Shani, Tetrahedron 31, 2803 (1975).
- [24] J.F. Ireland & P.A.H. Wyatt, Adv. phys. org. Chemistry 12, 131 (1976).
- [25] S. Jolidon & H.-J. Hansen, Chimia 33, 412 (1979).
- [26] G. H. Schmid, Canad. J. Chemistry 46, 3415 (1968).
- [27] J.A. Thompson & D.J. Cram, J. Amer. chem. Soc. 91, 1778 (1969).
- [28] V. Wolf, Liebigs Ann. Chem. 576, 35 (1952).
- [29] G. Amiard, R. Heymès & L. Velluz, Bull. Soc. chim. France 1955, 191.
- [30] E.J. Bourne, S. H. Henry, C. E. M. Tatlow & J. C. Tatlow, J. chem. Soc. 1952, 4014.
- [31] W. M. Lauer & W. F. Filbert, J. Amer. chem. Soc. 58, 1388 (1936).
- [32] G. de Saqui-Sannes, M. Rivière & A. Lattes, Tetrahedron Letters 1974, 2073.
- [33] K. Ziegler, A. Späth, E. Schaaf, W. Schumann & E. Winkelmann, Liebigs Ann. Chem. 551, 80 (1942).
- [34] D.J. Pasto & G.R. Meyer, J. org. Chemistry 33, 1257 (1968).
- [35] T. Masamune, Bull. chem. Soc. Japan 30, 491 (1957); O.L. Chapman, G.L. Eian, A. Bloom & J. Clardy, J. Amer. chem. Soc. 93, 2918 (1971).