SYNTHESIS OF DAUNOSAMINE*

TADATOSHI YAMAGUCHI AND MASAHARU KOJIMA

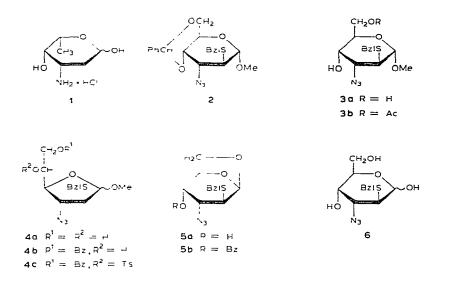
Faculty of Pharmaceutical Sciences, Kyushu University 62, Higashi-ku, Fukuoka 812 (Japan) (Received February 7th, 1977; accepted for publication March 31st, 1977)

ABSTRACT

The rearrangement of methyl 3-azido-2-S-benzyl-3-deoxy-2-thio- α -D-altropyranoside (3) in methanol to give methyl 3-azido-2-S-benzyl-3-deoxy-2-thio- $\alpha\beta$ -Daltrofuranoside (4a) was catalysed by Amberlite CG-120(H⁺) resin. Partial benzoylation of 4a gave the 6-O-benzoyl derivative (4b), the 5-O-toluene-p-sulphonyl derivative (4c) of which was converted into methyl 5,6-anhydro-3-azido-2-S-benzyl-3deoxy-2-thio- $\alpha\beta$ -L-galactofuranoside (7) with methanolic sodium methoxide. Reduction of 7 with lithium aluminium hydride gave the 3,6-dideoxy sugar (8a) which, with Raney nickel, gave methyl 3-amino-2,3,6-trideoxy- $\alpha\beta$ -L-lyxo-hexofuranoside (9). Acid hydrolysis of 9 gave 3-amino-2,3,6-trideoxy-L- l_1xo -hexose (daunosamine) which is a component of the antibiotic daunomycin.

INTRODUCTION

Daunosamine (1, 3-amino-2,3,6-trideoxy-L-lyxo-hexose) which is a component of a cytotoxic antibiotic daunomycin, was isolated as its hydrochloride by Arcamone et al.² and synthesized from L-rhamnose by Goodman et al.³. We have found that hexopyranoside derivatives having an S-substituent at C-2 can be isomerized to the corresponding furanosides^{1.4}, indicating that L sugars can be obtained from Dglucose. For example, L-rhodinose (2,3,6-trideoxy-L-threo-hexose), which is a component of the antibitoic rhodomycin or streptolydigin, was synthesised from methyl 2,3-dideoxy-2,3-epithio- α -D-mannofuranoside derived from D-glucose⁵. We now report on the isomerization of methyl 3-azido-2-S-benzyl-4,5-O-benzylidene-3-deoxy-2-thio- α -D-altropyranoside (2) and the synthesis therefrom of 1.


RESULTS AND DISCUSSION

Goodman et al.⁶ reported that syrupy methyl 3-azido-2-S-benzyl-3-deoxy-2-thio- α -D-altropyranoside (3a, $[\alpha]_{D}$ + 61°) was obtained on treatment of 2 with

^{*}Thio Sugars: Part V1.

4

Amberlite CG-120(H⁺) resin in 90% methanol. In our hands, this procedure gave a syrup ($[\alpha]_D + 52^\circ$) which contained three components (t.l.c.). Chromatography of the mixture gave 1,6-anhydro-3-azido-2-S-benzyl-3-deoxy-2-thio- β -D-altropyranose (5a, 1.2%), 3-azido-2-S-benzyl-3-deoxy-2-thio-D-altrose (6, 8.3%), and a syrup (A, 86.5%; $[\alpha]_D + 62^\circ$). The structure of 5a was confirmed by the fact that the monobenzoate (5b) had a p.m.r. spectrum similar to that of 1,6-anhydride derivatives¹. The $[\alpha]_D$ value of A is similar to that of 3a reported by Goodman *et al.*, but formaldehyde was liberated on oxidation⁴ of A with sodium metaperiodate, indicating that it is, at least partly, a furanoside structure. Hydrolysis of 2 with oxalic acid in 80% acetone gave a syrup (B, $[\alpha]_D + 45^\circ$), the i.r. spectrum of which was similar to that of A, but formal-dehyde was not formed on oxidation with sodium metaperiodate. Therefore, B is 3a, from which the 6-benzoate (3b) was obtained. Hydrolysis of 3a with the resin in water gave 6 as main product.

The $[\alpha]_D$ value of A increased $(+62^\circ \rightarrow +71.5^\circ)$ with increase in reaction time $(15\rightarrow 255 \text{ h})$. The p.m.r. spectrum of A showed doublets for the anomeric protons of α - and β -furanoside at $\delta 4.75$ $(J_{1,2} \ 1.5 \text{ Hz})$ and 4.53 $(J_{1,2} \ 4.5 \text{ Hz})$, together with a singlet at $\delta 4.63$ for H-1 in **3a**. Thus, A is a mixture of **3a** and its furanoside isomers, the proportion of which varies according to the reaction time. Syrupy A, obtained on reaction for 255 h, was fractionated by chromatography. Eluted first was a syrup $([\alpha]_D + 97^\circ)$ which was identified as methyl 3-azido-2-S-benzyl-3-deoxy-2-thio- $\alpha\beta$ -D-altrofuranoside (**4a**), because the p.m.r. spectrum contained doublets for anomeric protons at $\delta 4.75$ (α -furanoside) and 4.53 (β -furanoside); there was no signal at δ 4.63 (α -pyranoside). The yields of **5a**, **6**, and A are shown in Table I for each reaction time. Thus, during the isomerization **3a** \rightarrow **4a**, **3a** was also transformed into **5a** and **6**.

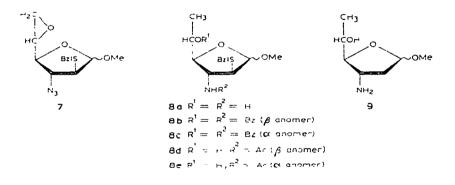
SYNTHESIS OF DAUNOSAMINE

TABLE I

Reaction time (h)	Yield of products (%)			
	5a	б	Syrup A	
15	1.2	8.3	86.5	
55	7.1	11.0	83.1	
100	8.7	9.9	81.4	
156	9.4	9.4	82.6	
200	13.7	8.2	71.2	
255	12.6	5.0	71.1	

THE YIELDS OF PRODUCTS ON TREATMENT OF METHYL 3-AZIDO-2-S-BENZYL-4,6-O-BENZYLIDENE-3-DEOXY-2-THIO- α -D-ALTROPYRANOSIDE (2) WITH AMBERLITE CG-120(H⁺) RESIN IN 80% METHANOL AT 55⁻

Benzoylation of A gave the benzoate 3b and methyl 3-azido-6-O-benzoyl-2-Sbenzyl-3-deoxy-2-thio- $\alpha\beta$ -D-altrofuranoside (4b, $[\alpha]_D + 56^\circ$). The p.m.r. spectrum of 4b contained doublets for anomeric protons at δ 4.57 (J 4.5 Hz) and 4.77 (J 1.5 Hz). Table II shows the yields of 3b and 4b on benzoylation of A obtained from various reaction times of 2 with the resin; the proportion of 4a in A increases with increase in reaction time. Tosylation of 4b gave syrupy methyl 3-azido-6-O-benzoyl-2-S-benzyl-3-deoxy-5-O-toluene-p-sulphonyl-2-thio- $\alpha\beta$ -D-altrofuranoside (4c) in quantitative yield. Treatment of 4c with sodium methoxide gave syrupy methyl 5,6-anhydro-3azido-2-S-benzyl-3-deoxy-2-thio- $\alpha\beta$ -L-galactofuranoside (7, 96.8%; $[\alpha]_D + 81^\circ$), which had an i.r. band at 3050 cm⁻¹ (terminal epoxymethylene group) but no absorption (cf. 4c) at 1720 (C=O), 1185 and 1175 cm⁻¹ (SO₂). The formation of 7 confirmed that 4a has a furanoid structure.


TABLE II

Reaction time (h) for obtaining syrup A	Yield of product	ts (%)	
	3b	4b	
15	35.3	0.4	
55	59.5	20.0	
100	50.2	38.1	
156	50.0	47.2	
255	51.9	43.2	

THE	YIELDS	OF	BENZOYLATION	PRODUCTS	FROM A^a
-----	--------	----	--------------	----------	------------

"Obtained from 2 by methanolysis with Amberlite CG-120(H⁺) resin for various reaction times.

Treatment of 7 with lithium aluminium hydride gave syrupy methyl 3-amino-2-S-benzyl-3,6-dideoxy-2-thio- $\alpha\beta$ -L-galactofuranoside (8a, 72.2%; $[\alpha]_D - 29^\circ$), the p.m.r. spectrum of which contained doublets at δ 4.54 (J 4.5 Hz) and 4.77 (J 1.5 Hz) for anomeric protons. Benzoylation of 8a, followed by chromatography, gave methyl

3-benzamido-5-*O*-benzoyl-2-*S*-benzyl-3,6-dideoxy-2-thio- β -L-galactofuranoside (**8b**, m.p. 147–148°, $[\alpha]_D + 60°$) and methyl 3-benzamido-5-*O*-benzoyl-2-*S*-benzyl-3,6-dideoxy-2-thio- α -L-galactofuranoside (**8c**, m.p. 205–206°, $[\alpha]_D - 37°$) in yields of 70 and 19.9%, respectively. The p.m.r. spectra of **8b** and **8c** showed terminal methyl proton signals (δ 1.45 and 1.42, respectively). Acetylation of **8a**, followed by chromatography, gave syrupy methyl 3-acetamido-2-*S*-benzyl-3,6-dideoxy-2-thio- β -L-galactofuranoside (**8d**. $[\alpha]_D + 96°$) and methyl 3-acetamido-2-*S*-benzyl-3,6-dideoxy-2-thio- β -L-galactofuranoside (**8e**, m.p. 190–191.5°, $[\alpha]_D - 96.5°$) in yields of 64.2 and 19.2°6, respectively. The structures of **8d** and **8e** were determined by p.m.r. spectroscopy.

From the foregoing results, it is clear that the reductive opening of the 5,6-epoxy ring of 7 occurred between C-6 and the attached oxygen atom. Treatment of 8a with Raney nickel gave syrupy methyl 3-amino-2,3,6-trideoxy- $\alpha\beta$ -L-*lyxo*-hexofuranoside (9, 48.3%; $[\alpha]_D - 17^{\circ}$); the anomers could be separated by t.l.c. Furthermore, 9 (35.5%) was obtained by treatment of 7 with Raney nickel under hydrogen.

Hydrolysis of 9 with 0.2M hydrochloric acid gave daunosamine hydrochloride (1).

EXPERIMENTAL

General methods. — Melting points are uncorrected. Specific rotations were measured by an automatic polarimeter DIP-SL (JASCO). I.r. spectra were recorded with a DS-701 type (JASCO) instrument, and p.m.r. spectra with a JNM-C-60H (JEOL) spectrometer. Column chromatography was performed on 100-mesh silicic acid (Mallinckrodt Chem. Co.) with the solvent system specified. Amberlite CG- $120(H^-)$ resin was prepared in the usual way.

Hydrolysis of methyl 3-azido-2-S-benzyl-4,6-O-benzylidene-3-deoxy-2-thio- α -Daltropyranoside (2). — (a) With Amberlite CG-120(H⁺) resin. A mixture of resin (9.2 g) and a solution of 2 (2 g) in 80% methanol (200 ml) was stirred for 15 h at 55°, cooled, filtered through Celite, and concentrated *in vacuo*. The resulting syrup, $[\alpha]_D^{26} + 52^\circ$ (c 0.1, chloroform), was chromatographed with chloroform-ethyl acetate (4:1). Eluted first was 1,6-anhydro-3-azido-2-S-benzyl-3-deoxy-2-thio- β -D-altopyranose (5a. m.p. 90–95°). Recrystallization from benzene–light petroleum gave colourless needles (17.1 mg, 1.2%), m.p. 99.5–100.5°, $[\alpha]_D^{27.5} - 33.5°$ (c 0.95, chloroform); v_{max}^{KBr} 3480 (OH), 2100 (N₃), and 710 cm⁻¹ (phenyl). P.m.r. data δ 2.45 (broad, 1 H, OH), 2.84 (q, 1 H, $J_{1,2}$ 0.7, $J_{2,3}$ 10.6 Hz, H-2), 3.49 (q, 1 H, $J_{2,3}$ 10.6, $J_{3,4}$ 3.7 Hz, H-3), 3.89 (s, 2 H, CH₂-S), 4.48 (m, 1 H, H-5), and 5.27 (d, 1 H. $J_{1,2}$ 0.7 Hz, H-1).

Anal. Calc. for $C_{13}H_{15}N_3O_3S$: C, 53.24; H, 5.16: N, 14.33. Found: C, 53.33; H, 5.21; N, 14.37.

Eluted second was syrupy A (1.358 g, 86.5%; $[\alpha]_D^{17} + 62^\circ$) which was a mixture of methyl 3-azido-2-S-benzyl-3-deoxy-2-thio- α -D-altropyranoside (3a) and methyl 3-azido-2-S-benzyl-3-deoxy-2-thio- $\alpha\beta$ -D-altrofuranoside (4a).

Eluted third was 3-azido-2-S-benzyl-3-deoxy-2-thio-D-altrose (6) isolated as colourless needles (132.9 mg, 8.3%), m.p. 79-81°, $[\alpha]_D^{15} - 56^\circ \rightarrow +2^\circ$ (equil., c 0.27, methanol); v_{max}^{KBr} 3400-3000 (OH), 2110 (N₃), and 715 cm⁻¹ (phenyl). P.m.r. data: δ 3.35 (s, shifted to low field on addition of D₂O, OH of crystal water), 4.93 (q, 1 H, collapsed into a doublet on addition of D₂O, J 6 Hz, J_{1.2} 1.5 Hz, H-1), and 6.62 (d, 1 H, disappeared on addition of D₂O, J 6 Hz, HO-1).

Anal. Calc. for $C_{13}H_{17}N_3O_4S \cdot H_2O$: C, 47.41; H, 5.82; N, 12.76. Found: C, 47.40; H, 5.83, N, 12.60.

The yields of 5a, 6, and A obtained on treatment of 2 (5 g) with Amberlite CG-120(H^+) resin in 80% methanol (500 ml) for various reaction times are listed in Table I.

(b) With oxalic acid. Oxalic acid (3 g) was added to a solution of 2 (1 g) in 80% acetone (100 ml). The mixture was boiled under reflux for 8 h and then cooled, neutralised (BaCO₃), filtered, and concentrated *in vacuo*. The syrupy residue was eluted from silicic acid with chloroform-ethyl acetate (1:1) to give 2 (300 mg, 30%), followed by syrupy methyl 3-azido-2-S-benzyl-3-deoxy-2-thio- α -D-altropyranoside (3a; 460 mg, 58.5%), [α]_D²⁶ +45° (*c* 0.5, chloroform); v_{max}^{liquid} 3550 (OH), 2110 (N₃), and 710 cm⁻¹ (phenyl). P.m.r. data: δ 2.30 (s. 2 H, disappeared on addition of D₂O. OH), 3.01 (d, 1 H, J_{2.3} 3 Hz, H-2), 3.71 (s. 3 H, OMe). 3.80 (s. 2 H, CH₂-S), and 4.63 (s, 1 H, H-1).

Anal. Calc. for $C_{14}H_{19}N_3O_4S$: C, 51.67; H, 5.88; N, 12.91. Found: C, 51.59: H, 6.04; N, 12.54.

1,6-Anhydro-3-azido-4-O-benzoyl-2-S-benzyl-3-deoxy-2-thio-β-D-altropyranose (**5b**). — Conventional treatment of **5a** (100 mg) with benzoyl chloride (75 mg) in pyridine (1 ml) gave a syrupy product which was eluted from silicic acid with chloroform to give **5b** (141.8 mg), m.p. 96–98°. Recrystallization from light petroleum gave colourless needles (110.8 mg, 82.1%), m.p. 99–100°, $[\alpha]_D^{23.5}$ –181° (*c* 0.59, chloroform); v_{max}^{KBr} 2100 (N₃), 1740 (C=O), and 710 cm⁻¹ (phenyl). P.m.r. data: δ 3.01 (d, 1 H, $J_{2,3}$ 10.6 Hz, H-2), 3.69 (q, 1 H, $J_{2,3}$ 10.6, $J_{3,4}$ 3.7 Hz, H-3), 4.78 (m, 1 H, H-5), 5.26 (q, 1 H, $J_{3,4}$ 3.7, $J_{4,5}$ 2.2 Hz, H-4), and 5.42 (s, 1 H, H-1).

Anal. Calc. for $C_{20}H_{19}N_3O_4S$: C, 60.45; H, 4.82; N, 10.58. Found: C, 60.21: H, 5.04; N, 10.48.

Methyl 3-azido-6-O-benzoyl-2-S-benzyl-3-deoxy-2-thio- α -D-altropyranoside (3b). — Conventional treatment of 3a (91 mg) with benzoyl chloride-pyridine, followed by purification of the crude product by chromatography, gave 3b, m.p. 95–105°. Recrystallization from methanol gave needles (104.5 mg, 79%), m.p. 110–111°, $[\alpha]_D^{26}$ +49° (c 0.5, chloroform); v_{max}^{liquid} 3510 (OH), 2110 (N₃), 1710 (C=O), and 710 cm⁻¹ (phenyl). P.m.r. data δ 2.45 (b, 1 H, OH), 3.30 (s, 3 H, OMe), 3.80 (s, 2 H, CH₂-S), 4.55 (s, 2 H, H-6,6'), and 4.69 (s, 1 H, H-1).

Anal. Calc. for $C_{21}H_{23}N_3O_5S$: C, 58.73; H, 5.40; N, 9.78. Found: C, 58.84; H, 5.51; N, 9.64.

Benzoylation of A (mixture of 3a and 4a). — Conventional treatment of A (2.8 g, obtained on treatment with the resin for 255 h), with purification by chromatography (elution with chloroform), gave first the syrupy dibenzoate of 3a and 4a (0.9 g, 19.6%), followed by syrupy methyl 3-azido-6-O-benzoyl-2-S-benzyl-3-deoxy-2-thio- $\alpha\beta$ -D-altrofuranoside (4b; 1.92 g, 51.9%), $[\alpha]_{1}^{13} + 56^{\circ}$ (c 0.28, chloroform); v_{max}^{liquid} 3510 (OH), 2100 (N₃), 1720 (C=O), and 710 cm⁻¹ (phenyl). P.m.r. data δ 3.28 (s, OMe), 3.83 (s, CH₂-S), 4.57 (d, $J_{1,2}$ 4.5 Hz, H-1 of β anomer), and 4.77 (d, $J_{1,2}$ 1.5 Hz, H-1 of α anomer).

Anal. Calc. for $C_{21}H_{23}N_3O_5S$: C, 58.73; H, 5.40; N, 9.78. Found: C, 59.12; H. 5.27; N, 9.60.

Eluted third was 3b. Recrystallization from methanol gave needles (1.60 g, 43.2%), m.p. 110-111°.

The yields of 3b and 4b obtained by benzoylation of A, obtained on treatment of 2 with the resin for different reaction times, are listed in Table II.

Methyl 5,6-anhydro-3-azido-2-S-benzyl-3-deoxy-2-thio- $\alpha\beta$ -L-galactofuranoside (7). — Conventional treatment of **4b** (630 mg) with toluene-*p*-sulphonyl chloride (1.5 g) and pyridine (10 ml) gave a syrupy product which was eluted from silicic acid with chloroform to give syrupy 3-azido-6-*O*-benzoyl-2-*S*-benzyl-3-deoxy-5-*O*-toluene*p*-sulphonyl-2-thio- $\alpha\beta$ -D-altrofuranoside (**4c**); $v_{\text{max}}^{\text{liquid}}$ 2100 (N₃), 1720 (C=O), 1185, 1175 (SO₂), and 710 cm⁻¹ (phenyl). Methanolic sodium methoxide (3 ml, from 120 mg of sodium) was added to a precooled solution of **4c** in chloroform (50 ml). The mixture was stored for 4 h and then poured into ice-water (30 ml). The chloroform layer was washed with water, dried (Na₂SO₄), and concentrated. The syrupy residue was eluted from silicic acid with benzene to give 7 as a colourless syrup (435.5 mg, 96.8%), $[\alpha]_D^{26} + 80^\circ$ (c 0.5, chloroform); v_{max}^{liquid} 3050 (terminal epoxymethylene group), 2100 (N₃), and 700 cm⁻¹ (phenyl).

Anal. Calc. for $C_{14}H_{17}N_3O_3S$: C, 54.72; H, 5.58; N, 13.68. Found: C, 54.77; H, 5.72; N, 13.55.

Hydrolysis of methyl 3-azido-2-S-benzyl-3-deoxy-2-thio- α -D-altropyranoside (3a). — A mixture of Amberlite CG-120(H⁺) resin (460 mg) and a solution of 3a (98.4 mg) in water (20 ml) was stirred for 17 h at 55° and then cooled, filtered through Celite, and concentrated. The syrupy residue (64.7 mg) was eluted from silicic acid with chloroform-ethyl acetate (4:1) to give first 5a (4.4 mg, 4.5%), m.p. 98–99°, then A (3a and 4a, 3.9 mg, 4.0%), and finally 6 (29.5 mg, 30.0%), m.p. 79–81°. Methyl 3-amino-2-S-benzyl-3,6-dideoxy-2-thio- $\alpha\beta$ -L-galactofuranoside (8a). — Lithium aluminium hydride (200 mg) was added to a solution of 7 (769.9 mg) in tetrahydrofuran (20 ml). The mixture was boiled under reflux for 1 h, and then cooled and poured into ice-water (20 ml). 2M Potassium hydroxide was added until all insoluble material had disappeared. The solution was extracted with chloroform, and the extract was washed with water, dried (Na₂SO₄), and concentrated *in vacuo*. The syrupy residue (820 mg) was eluted from silicic acid with chloroform-methanol (9.5:0.5) to give 8a as a colourless syrup (559.3 mg, 72.2%), $[\alpha]_D^{17} - 29^\circ$ (c 1, chloroform); v_{max}^{liquid} 3600–3200 (OH, NH₂) and 700 cm⁻¹ (phenyl). P.m.r. data: δ 1.18 (d, $J_{5,6}$ 6 Hz, Me-6 of α anomer), 1.25 (d, $J_{5.6}$ 6 Hz, Me-6 of β anomer), 1.91 (s, OH and NH₂), 3.32 (s, OMe), 3.81 (s, CH₂-S), 4.54 (d, $J_{1,2}$ 4.5 Hz, H-1 of α anomer), and 4.77 (d, $J_{1,2}$ 1.5 Hz, H-1 of β anomer).

Methyl 3-benzamido-5-O-benzoyl-2-S-benzyl-3,6-dideoxy-2-thio- β -L-galactofuranoside (**8b**) and - α -L-galactofuranoside (**8c**). — Conventional treatment of **8a** with benzoyl chloride in pyridine, followed by fractionation of the product on silicic acid by elution with chloroform, gave first **8b**, m.p. 112–113°. Recrystallization from 60% ethanol gave colourless needles (182.4 mg, 70.7%), m.p. 147–148°, $[\alpha]_D^{19} + 60^\circ$ (c 0.25, chloroform); v_{max}^{Nujol} 3300, 1690, 1640, 1555 (NH–C=O), 1730 (C=O), and 705 cm⁻¹ (phenyl). P.m.r. data: δ 1.45 (d, 3 H, $J_{5,6}$ 6 Hz, Me-6), 3.33 (s. 3 H, OMe), 3.69 (s, 2 H, CH₂-S), and 4.93 (d, 1 H, $J_{1,2}$ 1.5 Hz, H-1).

Anal. Calc. for C₂₈H₂₉NO₅S: C, 68.40; H, 5.94; N, 2.84. Found: C. 68.53; H, 5.93; N, 2.77.

Eluted second was 8c, m.p. 190–195°. Recrystallization from acetone gave colourless needles (51.9 mg, 19.9%), m.p. 205–206°, $[\alpha]_D^{19} - 37^\circ$ (c 0.24, acetone); v_{max}^{Nujol} 3240, 1640, 1540 (NH–C=O), 1730 (C=O), and 700 cm⁻¹ (phenyl). P.m.r. data: δ 1.42 (d, 3 H, $J_{5,6}$ 6 Hz, Me-6), 3.37 (s, 3 H, OMe). 3.88 (s, 2 H, CH₂-S), and 4.81 (d, 1 H, $J_{1,2}$ 4.5 Hz, H-1).

Anal. Calc. for C₂₈H₂₉NO₅S: C, 68.40; H, 5.94; N, 2.84. Found: C, 68.52: H, 5.70; N, 2.71.

Methyl 3-acetamido-2-S-benzyl-3,6-dideoxy-2-thio- β -L-galactofuranoside (8d) and - α -L-galactofuranoside (8e). — Conventional treatment of 8a (100 mg) with acetic anhydride in pyridine and fractionation of the product by elution from silicic acid with chloroform-methanol (9.5:0.5) gave, first, syrupy 8d (73.5 mg, 64.2%). Purification by chromatography gave a colourless syrup, $[\alpha]_D^{20.5} + 96^\circ$ (c 0.25, chloroform): v_{max}^{liquid} 3400 (OH), 3300, 1655, 1550 (NH-C=O), and 700 cm⁻¹ (phenyl). P.m.r. data: δ 1.25 (d, 3 H, $J_{5,6}$ 6 Hz, Me-6), 1.95 (s, 3 H, NAc), 2.58 (s, 1 H, OH), 2.88 (q, 1 H, $J_{1,2}$ 1.5, $J_{2,3}$ 3 Hz, H-2), 3.33 (s, 3 H, OMe), 3.84 (s, 2 H, CH₂-S), and 4.79 (d, 1 H, $J_{1,2}$ 1.5 Hz, H-1).

Anal. Calc. for C₁₆H₂₂NO₄S: C, 59.23; H, 6.83; N, 4.31. Found: C, 59.34: H, 7.07; N, 4.40.

Eluted second was 8e (34.1 mg, 29.8%), m.p. 175–181°. Recrystallization from chloroform–light petroleum gave colourless needles, m.p. 190.5–191.5°, $[\alpha]_{D}^{20.5} -97$ (c 0.25, chloroform); v_{max}^{Nujol} 3500 (OH), 3240, 1650, 1550 (NH–C=O), and 720 cm⁻¹

(phenyl). P.m.r. data: δ 1.18 (d, 3 H, $J_{5,6}$ 6 Hz, Me-6), 1.90 (s, 3 H, NAc), 2.20 (s, 1 H, OH), 3.14 (q, 1 H, $J_{1,2}$ 4.5 Hz, H-2), 3.79 (s, 2 H, CH₂-S), and 4.61 (d, 1 H, $J_{1,2}$ 4.5 Hz, H-1).

Anal. Calc. for C₁₆H₂₂NO₄S: C, 59.23; H, 6.83; N, 4.31. Found: C, 59.06; H, 7.05; N, 4.23.

Methyl 3-amino-2,3,6-trideoxy- $\alpha\beta$ -L-lyxo-hexofuranoside (9). — (a) To a suspension of Raney nickel W₄ (2 ml) in *p*-dioxane (9 ml) was added 8a (187 mg). The mixture was heated on a boiling water-bath for 1 h and then cooled, filtered through Celite, and concentrated *in vacuo*. The syrupy residue (75 mg) was eluted from silicic acid with chloroform-methanol (3:1) to give 9 as a colourless syrup (62.8 mg, 48.3%), $[\alpha]_{D}^{22} - 17^{\circ}$ (c 1.3, methanol).

Anal. Calc. for C₇H₁₅NO₃: C, 52.15: H, 9.83: N, 8.61. Found: C, 51.83; H, 9.53; N, 8.27.

(b) To a suspension of Raney nickel (8 ml) in p-dioxane (15 ml) was added 7 (483 mg). The mixture was shaken under a stream of hydrogen for 2.5 h, filtered through Celite, and concentrated *in vacuo*. The syrupy residue was purified by chromatography with ethyl acetate-methanol (3:1) to give 9 as colourless syrup (90 mg, 35.5%).

Daunosamine hydrochloride (3-amino-2,3,6-trideoxy-L-lyxo-hexose hydrochloride) (1). — A solution of 9 (30 mg) in 0.2M hydrochloric acid (1 ml) was stored for 84 h at room temperature and then concentrated *in vacuo* to dryness. A solution of the resulting light-brown crystals in methanol (2 ml) was treated with charcoal, filtered, concentrated to ~1 ml, and treated with acetone to give white powdery crystals of 1 (23 mg, 67.4%), m.p. 166–168° (dec.), $[\alpha]_D^{27} - 52.5°$ (c 0.25, water); lit.² m.p. 168° (dec.), $[\alpha]_D - 54.5°$; lit.³ m.p. 160° (dec.), $[\alpha]_D - 54.2°$.

Anal. Calc. for C₆H₁₃NO₃·HCl: C, 39.24; H, 7.68; N, 7.63. Found: C, 39.47; H, 7.54; N, 7.34.

ACKNOWLEDGMENTS

The authors thank the staff of the analytical section of this Faculty for elemental analyses, and i.r. and p.m.r. spectral measurements.

REFERENCES

- 1 T. YAMAGUCHI AND M. KOJIMA, Carbohydr. Res., 59 (1977) 129-140.
- 2 F. ARCAMONE, G. CASSINELLI, P. OREZZI, G. FRANCESCHI, AND R. MONDELLI, J. Am. Chem. Soc., 86 (1964) 5335-5336.
- 3 J. P. MARSH, JR., C. W. MOSHER, E. M. ACTON, AND L. GOODMAN, Chem. Commun., (1967) 973-975.
- 4 M. KOJIMA, M. WATANABE, T. YAMAGUCHI, S. ISHIMARU, AND T. TAGUCHI, Yakugaku Zasshi, 96 (1976) 1241–1246.
- 5 M. KOJIMA, S. ISHIMARU, AND T. TAGUCHI, unpublished data.
- 6 J. E. CHRISTENSEN AND L. GOODMAN, J. Am. Chem. Soc., 83 (1961) 3827-3834.