THALACTAMINE, I-OXO-2-METHYL-5,6,7-TRIMETHOXY-I,2-DIHYDROISOQUINOLINE IN A THALICTRUM MINUS VARIETY

N.M.Mollov and H.B.Dutschewska Institut of Organic Chemistry, Bulgarian Academy of Sciences, Sofia I3, Bulgaria

(Received in UK 8 April 1969; accepted for publication 25 April 1969)

From the above-ground parts of a Thalictrum minus variety spread near the Black sea coast of Bulgaria a new weakly basic alkaloid, thelactamine with molecular formula $C_{13}H_{15}NO_4$ and m.p.II2-II4^OC was isolated. Our attempts to elucidate the structure of this compound lead to I-oxo-2-methyl-5,6,7-trimethoxy-I,2-dihydroisoquinoline, the first example of a new type of simple isoquinoline alkaloids.

The mass spectrum of I shows a molecular peak at 249 m/e. The bands at 1660 cm^{-I} and 1620 cm^{-I} in the IR-spectrum are ascribed to a lactam carbonyl group and a conjugated double bond respectively (I). In good agreement with structure I is the NMR spectrum of the compound (2). The absorption of the N-methyl group at 6,46 τ is shifted downfield by the neighbouring carbonyl group and the double bond. There are peaks for three methoxyl groups at 6,07 τ from 6 protons and at 6,10 τ from three protons. The AB type quartet at 3,09 τ and 3,42 τ (J=I2 cps) indicates the presence of the protons at C₃-C₄ double bond. The C₃ aromatic proton at 2,44 τ is shifted downfield because of the deshilding effect of the peri carbonyl group.

The close similarity between the UV, IR and NMR spectral data of I and III is also in good agreement with structure I. Compound III was obtained by Pd/C dehydrogenation of II, which was earlier prepared by $KMnO_A$ in acetone oxidation of the alkaloids thalicarpine and thalmelatine (3). The molecular weight of III determined by MS is 2I9. There is absorption at I650 cm^{-I} and I630 cm^{-I} for the carbonyl group and the conjugated double bond in the IR-spectrum of III. The NMR spectrum of III shows the N-methyl group protons at 6,46 τ and C₈ aromatic proton at 2,25 τ , shifted downfield as in I. The AB type quartet for the C₃-C₄ double bond protons appears at 3,12 and 3,72 τ (J=I2 cps). The difference between I and III is as it should be expected the absorption of two methoxyl groups at 6,07 and 6,09 τ and the appearence of the C₅ aromatic proton at 3,24 τ . The maxima in the UV spectra of I and III are at 247 m_H (e_I=42 000, e_{III}=36 200); 270 m_H (e_I=4 000, e_{III}=5 600); 28I m_H (e_I=4 800, e_{III}=6 000); 293 m_H (e_I=5 500, e_{III}=6 400) for both compounds. Differences are only in the maxima at 332 m_H (e=3 000) for I and 322 m_H (e=3 200)for III.

Compound I is rather stable. Acid and alkaline hydrolysis failed. The attempts to hydrogenate I with LiAlH_4 , NaBH_4 and with Adam's catalyst up to 100° C were unsuccessful. The C_3-C_4 double bond can be hydrogenated under high temperature and high pressure (80 atm.and 80° C). The resulting compound IV with m.p.IO4-IO6°C is completely identical according to IR and NMR spectra (TLC did not separate I and IV) with the same compound synthesised by us. The synthesis of IV was realised through 2,3,4-trimethoxyphenetylamine (4) following by formaldehyde/formic acid cyclisation to 2-methyl-5,6,7-trimethoxy-I,2,3,4-tetrahydroisoquinoline and KMnO₄ in acetone oxidation to IV. Zinc dust distillation of I indicated by means of TLC the presence of isoquinoline.

REFERENCES

- I. The IR-spectra were taken on a UNICAM SP 200 G spectrofotometer in KBr.
- The NMR spectra were taken on a JNM 60-S spectrometer at 60 Mc in deuterated CHC1 with tetramethylsilane as an internal standard.
- N.M.Mollov, H.B.Dutschewska, <u>Tetrahedron Letters</u> 2219 (1964); ibid., 853 (1966).
- 4. S.Kubota, T.Masui, E.Fujita and S.M.Kupchan, <u>J.Org.Chem.</u> <u>31</u>, 516 (1966).