acetone solution, when taken to dryness, yielded a solid which was analyzed by nmr, ir, and mass spectrometry.

The major constituent of the ether extract of $(NH_4)_2SO_4$ -saturated urine was purified by successive chromatography on three silica gel columns, using benzene or chloroform with increasing concentrations of methanol. The fine white needles which were obtained were recrystallized from a mixture of methanol and chloroform and then analyzed by nmr, ir, and mass spectrometry. It was found to be identical with a synthetic sample of *p*-hydroxy-phenylurea prepared by the method of Kalckhoff.⁴

Spectral Analyses. The nmr spectra were obtained at 100 MHz on a Varian Associates HA-100 spectrometer, using acetoned₆ as solvent. The ir spectra were obtained on a Perkin-Elmer Model 521 infrared spectrometer, using KBr pellets. The mass spectra were obtained on an AEI-MS-902 mass spectrometer at 70 eV, using direct probe for introduction of the sample.

Acknowledgments. The author is indebted to the following: Mr. Arthur Alter for the synthesis of the tritiumlabeled compound, Messrs. Charles Estep and Jerome Netwal for distribution and recovery studies, Mr. Leo Swett for attempted synthesis of the tetrazole of the parent compound, Dr. Milton Levenberg for mass spectrometry, Ms. Ruth Stanaszek for nmr, and Mr. William Washburn for ir determinations.

Supplementary Material Available. Supplementary material consisting of the mass spectrum of authentic 5-(p-hydroxyanilino)-1,2,3,4-thiatriazole, mass and ir spectra of the unknown metabolite of 5-(p-hydroxyanilino)-1,2,3,4-thiatriazole, and the mass and ir spectra of the synthetic analog, 1-phenyltetrazoline-5-thione, will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only on microfiche $(105 \times 148 \text{ mm})$ $20 \times$ reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th St., N.W., Washington, D. C. 20036. Remit check or money order for \$3.00 for photocopy or \$2.00 for microfiche, referring to code number JMED-73-1157.

References

- (1) E. Werle and F. Stücker, Arzneim.-Forsch., 8, 28 (1958).
- (2) C. P. Petroff, H. H. Patt, and P. P. Nair, Int. J. Appl. Radiat. Isot., 16, 599 (1965).
- (3) W. H. Fishman, Methods Enzymol., 3, 55 (1955).
- (4) F. Kalckhoff, Ber., 16, 376 (1883).

Synthesis of Antimicrobial Nitroimidazolyl 2-Sulfides, -Sulfoxides, and -Sulfones

Robert C. Tweit, E. M. Kreider,* and R. D. Muir

Departments of Chemical and Biological Research, Searle Laboratories, A Division of G. D. Searle & Co., Chicago, Illinois 60680. Received March 29, 1973

Imidazoles having a variety of alkyl and aralkyl sulfur substituents at the 2 position, and their 5- and 4-nitro analogs, were synthesized and tested for a broad spectrum of biological activities. Many of the nitroimidazoles were potent *in vitro* trichomonacides; other activities observed among the structural series prepared include antibacterial, antifungal, antinematode, and antiinflammatory.

The introduction of 1-(2-hydroxyethyl)-5-nitro-2methylimidazole (Flagyl; metronidazole) as a highly effective agent for treatment of human trichomoniasis and of 1,2-dimethyl-5-nitroimidazole (Emtryl; dimetridazole) for turkey histomoniasis has stimulated a number of synthetic programs involving nitroimidazoles. This work has resulted in several compounds which are potential products in the human or animal fields: e.g., 1-methyl-2-isopropyl-5-nitroimidazole (ipronidazole);¹ 1-(2-morpholinoethyl)-2-methyl-5-nitroimidazole (nitrimidazine);² 1-methyl-2carbamoyloxymethyl-5-nitroimidazole (Ridzole; ronidazole).3 1-(2-hydroxyethyl)-2-(p-fluorophenyl)-5-nitroimidazole (flunidazole);⁴ 1-methyl-2-(p-fluorophenyl)-5-ni-(MK-910);⁵ troimidazole 1-(2-ethylsulfonylethyl)-2methyl-5-nitroimidazole (Fasigyn; tinidazole);⁶ 2-amino-5-(1-methyl-5-nitro-2-imidazolyl)-1,3,4-thiadiazole (CL 64885);⁷ and various 2-nitroimidazole derivatives.⁸ This paper describes several series of 2-(substituted mercapto)imidazoles and their nitro derivatives which were made in a search for a potent antitrichomonal agent with a broader biological activity profile than metronidazole.

Chemistry. The 1-alkyl-2-imidazolyl sulfides (Tables I, II, and VI-IX) were prepared by alkylation of the corresponding 1-alkyl-2-mercaptoimidazole with the appropriate halides in dioxane or 2-propanol.

Nitration of the sulfides was carried out by heating at 100° for 0.5-1.5 hr in aqueous nitric acid (100 parts of 70% HNO₃ to 40 parts of H₂O). This procedure was found to be preferable to H₂SO₄-HNO₃ nitrations which frequently became violent. Longer heating was inadvisable for arylmethyl sulfides owing to oxidative cleavage at the *S*-methylene bond as shown by the isolation of the corresponding benzoic acid. This oxidation could usually be detected by the appearance of solid after 45 min of heat-

N JSOn—R:HA	Formula Analyses Mp , ^o C Trichomonas T. aceti	C (H)(N/2) · C (H & U) · U · U · 1 · 30 - 88 · 1 · 10 · 10 · 10 · 10 · 10 · 10 ·			N Br 130 5-133 10 000	N B_{r} 08 F_{-100} 10,000	N Br	N Rr 01_09 10 000	N.S 101.5.102.5	N, S 55–64 1,000	S N, S Liquid <1	C, H 41–44	HBr N, Br 105–107	C, H Liquid	C, H Luquid	ц Č	Current Strate I Current Curre	C. H. N Liquid 1 >	Br 110.5-112 100	N, S $35-37$ $100 > 1,0$	N, Br 112–114 10,000	. N, Br 106–110 1,000 1	$C_{161}(1_{30}(1_{30}) - 2.5, 1.15)$ $C_{161}(1_{30}) - 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,$	N I 67-71 10	$C_{n}H_{s}C[N,S]$ N. S 103-107.5 100 1,	$C_{18}H_{34}N_2S \cdot HBr$ N, Br 90–92 100	C, H 42–47.5	CleH3#N20,S N,S 58-60.5 1,000 CHNOCCHOCNCS 87.88 10 100	N. S ^{d} Liquid 100	N, Br $74-77$ 100	N, Br 112–114 100	N, Cl 93-96 10,000	$\frac{1}{N}$	C ₁₈ H ₃₄ N ₂ OS N, S 55-56 100 C _{.0} H _{.5} N ₀ S C H N 55-56 100	C. H 52-53 >1.	C, H 85-86	$C_{18}H_{28}N_{5}O_{4}S$ H, C^{c} 95–96.5 >1,000	N.S 109-110	IBr N, Br 113–116 100	$C_{20}H_{38}N_{2}S \cdot HBr$ N, Br 114–115 1,000 10
	\mathbf{R}_1 \mathbf{R}_2 n HA	~					$(CH_2)_3 CH_3$		(CH2),CH3 0 (CH3),CH4 0	$(CH_3)_3CH_3 = 0$	(\mathbf{CH}_2) , \mathbf{CH}_3 0		$(CH_2)_{\gamma}CH_3$	(CH_2) , CH_3	$(CH_2)_7CH_3$	$CH_{3} \qquad (CH_{2})-CH_{3} \qquad 0$		\mathbf{H}_{i} (CH ₀) ₈ CH ₁		Ŭ	H_3 (CH ₂) ₁₀ CH ₃ 0	(CH ₂) _n CH ₃ 0		$CH_3 \qquad (CH_2)_{\rm IICH_3} \qquad V \qquad CH_2CH_3 \qquad V \qquad CH_2CH_3$	$(CH_{2})_{11}CH_{2} = 0$	CH_{3} $(CH_{2})_{\rm II}CH_{3}$ 0	CH ₃	$\begin{array}{ccc} CH_3 & (CH_3)_{II}CH_3 & 1 \\ CH & (CH) & CH & 0 \\ CH & (CH) & CH & 0 \\ CH & CH & CH & CH \\ CH & CH & CH & CH$	(CH_{2}) , (CH_{2}) , (CH_{2}) , (CH_{2})	$\mathbf{M}_{\mathbf{r}}$	$(CH_2)_{12}CH_3 = 0$	$(CH_2)_{12}CH(CH_3)_2 = 0$	$(CH_2)_{13}CH_3$	CH_{3} (CH_{2}) ₁₃ CH_{3} 1 CH_{2} (CH_{2}) ₁₅ CH_{3} 2	(CHa), CHa	$(CH_2)_{13}CH_3$	$CH_3 \qquad (CH_2)_{15}CH_3 \qquad 2$	(CH2)13CH3 (CH2)13CH3	$(CH_2)_{1,CH_3}$	
	R	 H 1 - •	11 11 17 1	•	•••						-					16 9-NO ₂	17 0-INU2 18 H			22 5-NO ₂	23 H	_ ,		20 H	_			31 5-NO ₂ 39 5 NO			_		_,,	38 H 39 H	40 5-NO.		42 5-NO ₂			46 H

Tweit, Kreider, Muir

47 H CH ₃ 48 H CH ₃ 48 H CH ₃ 50 5-NO ₂ CH ₃ 51 5-NO ₂ CH ₃ 52 4-NO ₂ CH ₃ 53 4-NO ₂ CH ₃ 54 H CH ₃ 55 4-NO ₂ CH ₃ 56 5-NO ₂ CH ₃ 64 H CH ₃ 65 5-NO ₂ CH ₃ 66 5-NO ₂ CH ₃ 67 H CH ₃ 67 H CH ₃	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcccccccccccccccccccccccccccccccccccc$	$ \sum_{2} {}_{3} CH_{3} (CH_{2})_{19} CH_{3} 0 CH_{3} (CH_{2})_{17} SO_{3} H C_{34} H_{45} N_{3} O_{2} S \cdot C_{18} H_{38} O_{3} S N, S 100-101 1,000 >1,000 1,000 (CH_{2})_{19} CH_{3} 0 HBr C_{24} H_{46} N_{3} S \cdot HBr N, S 116-119 >1,000 1$	ports mp 156°. We have	th this structure. " G. W	one. Our mir is consistent with further with the weight in the properties of the pro
H H 5-N0 ² 5-N0 ² 5-N0 ² 5-N0 ² 6-H ³ 4-N0 ² 6-H ³ 4-N0 ² 6-H ³ 6-H ³ 6-H ³ 6-H ³ 6-H ³ 6-H ³ 6-H ³ 6-H ³ 6-H ³ 7-H ³ 6-H ³ 7-H ³ 6-H ³ 7-H ³	$\begin{array}{c} (CH_3)_{15}CH_3 \\ (CH_2)_{15}CH_3 \\ (CH_2)_{15}CH_3 \\ (CH_2)_{15}CH_3 \\ (CH_2)_{15}CH_3 \\ (CH_3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		CH_{3} (CH ₂) ₁₇ CH ₃ 0 (CH ₂) ₁₉ CH ₃ 0	(1958), reports mp 156°. We have a consistent with this structure b C	5	Ēċ
$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 555 \\ 55 \\ 55 \end{bmatrix} \begin{bmatrix} 51 \\ 49 \\ 49 \\ 55 \end{bmatrix} \begin{bmatrix} 51 \\ 49 \\ 49 \\ 55 \end{bmatrix} \begin{bmatrix} 51 \\ 49 \\ 51 \end{bmatrix} \begin{bmatrix} 51 \\ 49 \\ 5$	H 5-NO ₂ 5-NO2	H H N02 102 102 102 102 102 102 102 102 102 1	56 5-NO ₂ (CH ₂) ₃ C 57 H CH ₃	" J. A. Baker, J. Chem. Soc., 23 Rabor used sectors. Our num is 2	The average of the second seco	8. 1277 (1967) report the HCl

ing, at which time heating was discontinued. The benzhydryl sulfides (Table VIII) were particularly susceptible to cleavage, resulting in the preparation of only one nitro derivative in that series.

The major nitration product was a 5-nitroimidazolyl 2sulfide. Occasionally, nitration at the 4 position occurred, yielding 4-nitro 2-sulfides which were more susceptible to nitric acid oxidation than were the isomeric 5-nitro compounds. From these reactions either the 4-nitro sulfide, the 4-nitro sulfoxide, or both could be isolated in addition to the major 5-nitro sulfide product. Thus, sulfides 43 (Table I), 108, 122, 125 (Table III), and 203 (Table VI) were obtained as minor products by chromatographic separation of the nitration mixture. The 4-nitro sulfide 52 and the 4-nitro sulfoxide 53 were both isolated from the reaction which gave 5-nitro sulfide 49 as the major product, while sulfoxides 137, 140, 142, 146, 152, and 160 were the sole 4-nitration products obtained along with the corresponding 5-nitro sulfides in the respective reactions.

The structures of the isomeric products were assigned on the basis of nmr and ir spectra. The 5-H of the 4-nitro compounds appeared downfield in the nmr spectra $(DMSO-d_6)$ relative to the 4-H of the corresponding 5nitro isomers, the shift being in the range of 13-33 Hz. Similar downfield shifts in the spectra of 4-nitro compounds have been reported previously for isomeric 4(5)nitroimidazole systems.9,10 Another characteristic nmr distinction was the downfield position of the 1-methyl singlet in the 1-methyl-5-nitro compounds relative to its position in the spectra of the 4-nitro isomer. This shift was 6-14 Hz for sulfides, 10-13 Hz for sulfoxides, and 15-16 Hz for sulfones. Such a shift can be explained by the greater electron-withdrawing effect of the 5-nitro group closer to the N-methyl substituent.9,11 In the ir spectra, the distinguishing feature between 5- and 4-nitro isomers is the presence of a sharp band in the 989-998-cm⁻¹ region in the spectra of all of the 4-nitro compounds (either CHCl₃ or KBr), which was absent in the spectra of the 5 isomers.9

The remaining sulfoxides not obtained by *in situ* oxidation during nitration were generally best prepared by oxidation of the corresponding sulfide with 1 equiv of *m*chloroperbenzoic acid in CHCl₃.¹² An exception to this procedure was compound 133 which could be obtained only upon oxidation of 107 with NaIO₄ in aqueous MeOH; 134 was also prepared by this method.¹³

Sulfones were prepared by normal procedures from either the sulfide or sulfoxide using an excess of H_2O_2 -HOAc or *m*-chloroperbenzoic acid-CHCl₃.

Biological Results.[†] The assays of primary interest in this project were the *in vitro* antiprotozoal tests against *Tritrichomonas foetus, Trichomonas vaginalis,* and *Tetrahymena pyriformis.* The first two gave nearly identical results, the few exceptions being within a power of ten, and were used interchangeably as indicators of activity. Activity against *T. pyriformis* was usually of a lower order of magnitude than against *T. foetus* or *T. vaginalis.*

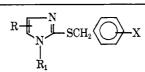
In addition to the three protozoal assays, representative compounds were screened *in vitro* against the gram-positive bacterium *Bacillus subtilis*; the gram-negative bacteria *Escherichia coli*, *Salmonella paratyphi A*, and *Erwinia sp.*; the fungi *Trichophyton mentagrophytes*, *Candida albicans*, *Fusarium sp.*, *Verticillium albo-atrum*, and *Ceratocystis ulmi*; the alga *Chlorella vulgaris*; and the helminth *Turbatrix aceti*. These semiquantitative assays were carried out by serial dilution in the appropriate liquid media with dilution by increments of ten, with the ex-

+ The conditions and media used in these tests are described more fully; see ref 14.

Table II

		Ū,	-N N SCH ₂ $-\langle ($	X ·HA		
		-	Ì	/		
	R	X	R HA	Formula	Analyses	Mp, °C
58	Н	H	HCl	$C_{10}H_{10}N_2S \cdot HCl$	N, S	160–161 . 5 ^a
59	CH_3	H	HCl	$C_{11}H_{12}N_2S \cdot HCl$	N, S	146-148
60 C1	H	4-NO ₂	HCl	$C_{10}H_9N_3O_2S \cdot HCl$	N, Cl	159.5-161
61 62	${ m CH}_3 { m CH}_3$	$\begin{array}{l} \mathbf{4-NO}_2\\ \mathbf{4-NO}_2 \end{array}$	HCl	$\begin{array}{c} \mathbf{C}_{11}\mathbf{H}_{11}\mathbf{N}_3\mathbf{O}_2\mathbf{S}\cdot\mathbf{HCl}\\ \mathbf{C}_{11}\mathbf{H}_{11}\mathbf{N}_3\mathbf{O}_2\mathbf{S}\end{array}$	N, Cl N, S	211-212 72.5-78.5
63	CH_3	4-NO ₂	CH_3CH_2I	$C_{13}H_{16}IN_{3}O_{2}S$	C, H, N	167-170
64	CH_2CH_2OH	4-NO ₂	HCl	$C_{12}H_{13}N_3O_3S \cdot HCl$	N, S	200-202
65	CH_2CH_2OH	$4-NO_2$		$C_{12}H_{13}N_{3}O_{3}S$	С, Н	98-98.5
66	$CH_2CH(CH_3)_2$	$4-NO_2$	HC1	$C_{14}H_{17}N_3O_2S \cdot HCl$	N, S	129-131
67 69	$(CH_2)_2CH_3$	$4-NO_2$	HCl	$C_{13}H_{15}N_{3}O_{2}S \cdot HCl$	N, Cl	144 - 146
68 69	$CH_3 CH_3$	$\frac{3-NO_2}{2-NO_2}$	HCl HCl	$\begin{array}{c} \mathbf{C}_{11}\mathbf{H}_{11}\mathbf{N}_{3}\mathbf{O}_{2}\mathbf{S}\cdot\mathbf{HCl}\\ \mathbf{C}_{11}\mathbf{H}_{11}\mathbf{N}_{3}\mathbf{O}_{2}\mathbf{S}\cdot\mathbf{HCl} \end{array}$	N, Cl N, S	191 - 192 140 - 142
70	CH ₃	$2-NO_2$	1101	$C_{11}H_{11}N_{3}O_{2}S$	C, H	81.5-84.5
71	CH ₃	4-Cl, 3-NO ₂	HBr	$C_{11}H_{10}ClN_3O_2S \cdot HBr$	Br, N	166-168
72	CH_3	2-Br, 4 -NO ₂	HBr	$C_{11}H_{10}BrN_3O_2S \cdot HBr$	C, H, Br	189-190.5
73	CH_3	4-CN	HBr	$C_{12}H_{11}N_3S \cdot HBr$	С, Н	174.5 - 178
74 75	CH_3	3-CN	HBr	$C_{12}H_{11}N_3S \cdot HBr$	N, S	179.5-181.5
75 76	${ m CH_3} { m CH_3}$	4-COCH ₃ 3-COCH ₃	HCl HCl	$\begin{array}{c} \mathrm{C}_{13}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{OS}\cdot\mathrm{HCl}\\ \mathrm{C}_{13}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{OS}\cdot\mathrm{HCl} \end{array}$	N, S N, S	197.5–199.5 157.5–159
77	CH_3	2,4-(CH ₃) ₂ , 5-COCH ₃	HCl	$C_{15}H_{18}N_2OS \cdot HCl$	N, S	174 - 175.5
78	CH_3	2,4(CH ₃) ₂ , 5-COCH ₃		$C_{15}H_{18}N_2OS$	C, H	64-65.5
		\sim				
79	CH_3		HCl	$C_{13}H_{18}N_2O_2S\cdot HCl$	N, S	176 - 178
80	CH_3	$4-CH(CH_3)CO_2H$	HCl	$\mathrm{C}_{14}\mathrm{H}_{16}\mathrm{N}_{2}\mathrm{O}_{2}\mathrm{S}$	N, S	128.5-133.5
81	CH_3	4-F	HCl	$C_{11}H_{11}FN_2S \cdot HCl$	N, S	145 - 148
82	CH_3	4-F		$C_{11}H_{11}FN_2S$	N, S	Liquid
83	CH_3	3-F	HCl	$C_{11}H_{11}FN_2S \cdot HCl$	C, H, N, Cl	151-152.5
84 85	${ m CH}_3 { m CH}_3$	$2-\mathbf{F}$ \mathbf{F}_5	HCl	$\begin{array}{c} \mathbf{C}_{11}\mathbf{H}_{11}\mathbf{F}\mathbf{N}_{2}\mathbf{S}\cdot\mathbf{HCl} \\ \mathbf{C}_{11}\mathbf{H}_{7}\mathbf{F}_{5}\mathbf{N}_{2}\mathbf{S}\cdot\mathbf{HBr} \end{array}$	C, H, N Cl, N, S	133.5–134 192–195
86	CH_3	$3-CF_3$	HCl	$C_{12}H_{11}F_3N_2S \cdot HCl$	\mathbf{N}, \mathbf{C}	132-135
87	CH_3	3-CF ₃	CH_3Br	$C_{13}H_{14}BrF_3N_2S$	N, S	155 - 157
88	Н	4-C1	HCl	$C_{10}H_{9}ClN_{2}S \cdot HCl$	N, S	138 - 140
89	CH_3	4-Cl	HCl	$C_{11}H_{11}ClN_2S\cdot HCl$	N, S	174-175.5
90 91	${ m CH_3} { m CH_3}$	2-Cl	HCl	$C_{11}H_{11}ClN_2S$	N, S N, Cl	Liquid 159–162
92	CH_3 CH_3	$3,4-Cl_2$ $3,4-Cl_2$	CH ₃ CH ₂ I	$\begin{array}{c} \mathbf{C}_{11}\mathbf{H}_{10}\mathbf{Cl}_{2}\mathbf{N}_{2}\mathbf{S}\cdot\mathbf{HCl}\\ \mathbf{C}_{13}\mathbf{H}_{15}\mathbf{Cl}_{2}\mathbf{IN}_{2}\mathbf{S} \end{array}$	N, Cl C, H	159-162 166.5-169
93	CH_3	3,4-Cl ₂	011301121	$C_{11}H_{10}Cl_2N_2S$	N, Cl	Liquid
94	\mathbf{CH}_{3}^{*}	$2, 4 - Cl_2$	HCl	$C_{11}H_{10}Cl_2N_2S \cdot HCl$	N, Cl	163 - 166
95 95	CH_3	$2,4-Cl_2$	HNO_3	$C_{11}H_{10}Cl_2N_2S \cdot HNO_3$	N, S	135-135.5 dec
96 07	CH ₃	$2,6-\mathrm{Cl}_2$	HCl	$C_{11}H_{10}Cl_2N_2S \cdot HCl$	N, Cl	184.5-185
97 98	$CH_3 CH_3$	\mathbf{Cl}_{5} 4- \mathbf{Br}	HBr	$\begin{array}{c} \mathrm{C}_{11}\mathrm{H}_{7}\mathrm{Cl}_{5}\mathrm{N}_{2}\mathrm{S}\\ \mathrm{C}_{11}\mathrm{H}_{11}\mathrm{Br}\mathrm{N}_{2}\mathrm{S}\cdot\mathrm{HBr} \end{array}$	C, H, Cl C, H, N	$155 - 156 \\ 158 - 160$
99	CH_3	4-Br 3-Br	HBr	$C_{11}H_{11}BrN_2S \cdot HBr$	C, H, N C, H, S	142-143
100	\widetilde{CH}_3	$4-O(CH_2)_2N(CH_2CH_3)_2$		$C_{17}H_{25}N_3OS$	N, S	Liquid
101	\mathbf{CH}_3	3-CH ₃	HCl	$C_{12}H_{14}N_2S \cdot HCl$	N, Cl	156.5 - 157.5
102	CH_3	$4-C(CH_3)_4$	HCl	$C_{15}H_{20}N_2S \cdot HCl$	N, Cl	190191
103	CH_3	$4-C_6H_5$	HCl	$C_{17}H_{16}N_2S \cdot HCl$	C, H, N	188-189.5
$\begin{array}{c} 104 \\ 105 \end{array}$	${ m CH}_3 { m CH}_3$	4-C ₆ H ₅ 2-Cl	HCl	$\begin{array}{c} \mathbf{C}_{17}\mathbf{H}_{16}\mathbf{N}_{2}\mathbf{S} \\ \mathbf{C}_{11}\mathbf{H}_{11}\mathbf{C}\mathbf{I}\mathbf{N}_{2}\mathbf{S}\cdot\mathbf{H}\mathbf{C}\mathbf{I} \end{array}$	C, H, N N, S	74.5–75 158.5–160.5
		4-V1			<u></u>	100.0 100.0

^a H. Heath, A. Lawson, and C. Rimington, J. Chem. Soc., 2217 (1951), report mp 153° for the free base.


ception of the fungal tests which were done on agar. The activity level assigned is the minimum concentration at which the compound completely inhibited growth of the organism (MIC, ppm), as determined by visual examination.

Metronidazole was screened against these organisms for comparison purposes, with the relevant results listed in Table IV.

Selected compounds were further tested for anthelmintic activity against the roundworm *Syphacia obvelata* in rats. The compound was administered to the infested rats by the intragastric route at approximately 125 mg/kg and the animals were subsequently examined for the presence of adult worms in the intestine. Only low-level activity was observed for these series of compounds in this test. Two standard assays were used to measure antiinflammatory activity, the carrageenan-induced foot edema test and the cotton wad granuloma test. A number of compounds representing almost all the series studied showed low-level antiinflammatory activity; the most active of these were 97 and 91 (Table II).

The 5-nitro sulfides were the most active antiprotozoal compounds in each of the series produced. The 5-nitrobenzyl sulfides of Table III were of particular interest; a number were active at 1 ppm (comparable to metronidazole) and almost all at or below 100 ppm. Of the corresponding unnitrated benzyl sulfides in Table II, only 65 and 70 were inhibitory at 10 ppm, most of the remaining compounds showing minimal activity of 10^{3-4} ppm. Similarly, the most active compounds (1-10 ppm) in Table I con-

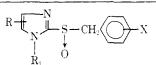
Table III

	R	\mathbf{R}_1	x	Formula	Analyses	Mp, °C	B. subtilis	Tricho- monas
106	5-NO ₂	CH3	н	$C_{11}H_{11}N_{3}O_{2}S$	·····	100-101ª	100	10
107	5-NO ₂	CH_3	$4-NO_2$	$C_{11}H_{10}N_4O_4S$	N, S	139-139.5	1	<1
108	$4-NO_2$	CH_3	$4-NO_2$	$C_{11}H_{10}N_4O_4S$	N, S	145 - 146	100	100
109	$5-CH_2CH_3$	CH_3	$4-NO_2$	${f C_{13}H_{15}N_3O_2S\cdot HCl}\ 0.25C_4H_8O_2{}^b$	N, Cl	111–113	100	1
110	$5-NO_2$	CH_3	$3-NO_2$	$C_{11}H_{10}N_4O_4S$	N, S	115-116	100	1
111	$5-NO_2^{c}$	CH_3	$2-NO_2$	$C_{11}H_{10}N_4O_4S$	C, H, N, S	145.4 - 145.6	>400	< 1
112	$5-NO_2$	CH_3	4-Cl, $3-NO_2$	$C_{11}H_9ClN_4O_4S$	C, H, N	137 - 140	>1,000	1
113	$5-NO_2$	CH_3	2-Br, 4-NO ₂	$C_{11}H_9BrN_4O_4S$	С, Н, S	144.5 - 145.5	>1,000	1
114	$5-NO_2$	CH_3	4-CN	$C_{12}H_{10}N_4O_2S$	S , O	185 - 187.5	>1,000	10
115	$5-NO_2$	CH_3	4-F	$C_{11}H_{10}FN_3O_2S$	N, S	141 - 142	>400	<1
116	$5-NO_2$	CH_3	3-F	$\mathrm{C}_{11}\mathrm{H}_{10}\mathrm{FN}_{3}\mathrm{O}_{2}\mathrm{S}$	C, H, N	126.5 - 127.5	1,000	100
117	$5-NO_2$	CH_3	2-F	$C_{11}H_{10}FN_3O_2S$	С, Н, S	81 - 82.5	1,000	10
118	$5-NO_2$	CH_3	4-Cl	$C_{11}H_{10}ClN_3O_2S$	N, S	114 - 115.5	>400	<1
119	$5-NO_2$	CH_3	2-C1	$C_{11}H_{10}ClN_3O_2S$	C, H, Cl, O	103 - 104	>1,000	100
120	$5-NO_2$	CH_3	$3,4-Cl_2$	$C_{11}H_9Cl_2N_3O_2S$	N, S	133 - 134	>400	10
121	$5-NO_2$	CH_3	$2,4-Cl_2$	$C_{11}H_9Cl_2N_3O_2S$	N, S	112.5 - 113.5	10	10
122	$4-NO_2$	CH_3	$2,4-Cl_2$	$C_{11}H_9Cl_2N_3O_2S$	N, S	145 - 147	10,000	1000
123	$5-NO_2$	\mathbf{CH}_3	$2,5-Cl_2$	$C_{11}H_9Cl_2N_3O_2S$	C, H, N	126.5 - 127.1	>1,000	100
124	$5-NO_2$	CH_3	$2,6-Cl_2$	$\mathrm{C}_{11}\mathrm{H}_{9}\mathrm{Cl}_{2}\mathrm{N}_{3}\mathrm{O}_{2}\mathrm{S}$	С, Н	90–91	1,000	100
125	$4-NO_2$	\mathbf{CH}_3	$2,6-Cl_2$	$\mathbf{C}_{11}\mathbf{H}_{9}\mathbf{Cl}_{2}\mathbf{N}_{3}\mathbf{O}_{2}\mathbf{S}$	С, Н	126 - 127	>1,000	>1000
126	$5-\mathrm{NO}_2$	CH_3	$\mathbf{Cl}_{\mathfrak{s}}$	$\mathrm{C}_{11}\mathrm{H}_6\mathrm{Cl}_5\mathrm{N}_3\mathrm{O}_2\mathrm{S}$	Cl, C, H	168-169	>1,000	100
127	$5-NO_2$	CH_3	4-Br	$\mathrm{C}_{11}\mathrm{H}_{10}\mathrm{BrN}_{3}\mathrm{O}_{2}\mathrm{S}$	C, H, Br, N, S	123 - 125	>1,000	1000
128	$5-NO_2$	CH_3	3-Br	$C_{11}H_{10}BrN_3O_2S$	Br, N	105 - 106	>1,000	1000
129	$5-NO_2$	CH_3	2-Br	$\mathrm{C}_{11}\mathrm{H}_{10}\mathrm{BrN}_{3}\mathrm{O}_{2}\mathrm{S}$	C, H, N	101 - 102	1,000	100
130	$5-NO_2$	CH_3	$3-\mathbf{CF}_3$	$C_{13}H_{15}N_{3}O_{2}S$	N, S	87–88	1,000	100
131	5-NO ₂	CH3	4-C(CH ₃) ₃	$C_{15}H_{19}N_{3}O_{2}S$	C, H, N	105.5-107.5	>1,000	1

^a D. W. Henry, U. S. Patent 3,341,549 (Sept 12, 1967) reports mp 100–101°. ^b Solvated with 0.25 mol of dioxane. ^c Nitrated by the H₂SO₄-HNO₃ procedure.

tained a 5-nitro group. In this series, however, the length of the alkyl group seems to be an additional activity-determining factor.

The number of very active compounds decreases progressively as the 5-nitrobenzyl sulfides are oxidized to sulfoxides (Table IV) and then to sulfones (Table V). No structural correlation was observed that might account for the much wider range of activity levels in these sulfoxides and sulfones. In the alkyl series in Table I, two 5-nitroalkyl sulfoxides, 12 and 17, were active at 10 and 1 ppm, respectively, the remainder being much less active.


The aralkyl compounds in Table VI and the benzhydryl compounds in Table VIII were generally less potent in the antiprotozoal tests than were their benzyl analogs in Table III, the highest being of the order of 100 ppm. In Table VII the most interesting compounds were the 5nitro-2-furyl derivatives because of the expected antimicrobial activity associated with such structures.¹⁵ Compound 213 was active against all four bacteria at 1 ppm, 207 at 10-100 ppm, and 210 at 100-1000 ppm; 207, 210, and 213 were also active agaist T, foetus at 10, 100, and 100 ppm, respectively. The activity of the carboxyalkyl compounds in Table IX depends not only on the presence of a 5-nitro group and an unoxidized sulfur but also on the nature of the carboxy function; e.g., the free acid with a 10-carbon alkyl chain (239) was very active, whereas the corresponding methyl ester was completely inactive (240).

4-Nitrobenzyl sulfides are less active than the 5 isomers by a factor of 10-100 (Table III), whereas the 4-nitro sulfoxides (Table IV) are usually as active as the 5 isomers. In marked contrast to the significant activity of some of these 4-substituted compounds, the alkyl sulfides, sulfoxides, and sulfones of Table I which were nitrated at the 4 position are almost totally inactive. Similar variable activities in other 4-nitroimidazole series have been reported.9,11,16,17

Regarding activities in the other antimicrobial screens, the compounds in Tables I and II showed a broad spectrum of low-level activity in most of the tests used (except the 4-nitro compounds in Table I, which were devoid of activity). The 5-nitrobenzyl sulfides of Table III were very specifically active against only protozoa, whereas the corresponding benzyl sulfoxides and sulfones (Tables IV and V) were generally much more potent antibacterial and antifungal agents than even the unnitrated sulfides. In addition to the activities listed in Tables IV and V against T. mentagrophytes, a number of these compounds were moderately active against Fusarium sp., V. albo-atrum, and C. ulmi. In Table VI, the sulfoxide 204 and the sulfone 205 have greater antifungal activities than any of the sulfides, at 1 ppm each against both T. mentagrophytes and V. Albo-atrum; 204 is also active at 10 ppm against Fusarium sp. There is a scattering of low-level antibacterial and antifungal activities in the remainder of the compounds, those in Table IX having more antibacterial properties than antifungal. Unfortunately, very little activity against C. albicans was observed in any of these compounds.

The greatest anthelmintic activity was observed in the long-chain alkyl sulfides of Table I (see activities listed). These compounds were not particularly active against S. *obvelata*, however.

Variation of the substituent at the 1 position of the imidazole ring appeared to have little influence on the antiprotozoal activity. For example, the alkyl sulfides 28, 33, and 34 in which the 1 substituent is CH_3 , Pr, and Bu, respectively, are all active at 100 ppm against *T. foetus*. Similarly, from Table II, 61, 64, 66, and 67 with the 1 Table IV

	R	\mathbf{R}_1	х	Formula	Analyses	Mp, °C	B. subtilis	Tricho- monas		T. menta- grophytes
132	Н	CH ₃	4-NO ₃	$C_{11}H_{11}N_{3}O_{3}S$	C, H, N	164-165	1000	1000	1000	1000
133	5-NO ₂	\widetilde{CH}_{3}	4-NO ₃	$C_{11}H_{10}N_4O_5S$	C, H, N	170.5-171.5	>400	10	<1	10
134	4-NO.	\widetilde{CH}_{3}	4-NO ₂	$C_{11}H_{10}N_4O_3S$	N, S	149-151	>400	<1	>1000	>1000
135	H	CH ₂ CH ₂ OH	4-NO ₂	$C_{12}H_{13}N_3O_4S$	C. H. N	145 - 146	1000	100	>1000	1000
136	5-NO.	CH_3	3-NO ₂	$C_{11}H_{10}N_4O_5S$	С, Н, S	175 - 177.5	100	10	1000	10
137	$4-NO_2$	CH ₃	$3-NO_2$	$C_{11}H_{10}N_4O_5S$	C, H, N	139 - 140	400	10		1000
138	$5-NO_2$	CH_3	$2-NO_2$	$C_{11}H_{10}N_4O_5S$	C, H, N	140.5 - 142	100	10	10	100
139	$5-NO_2$	CH_3	4-Cl, $3-NO_2$	$C_{11}H_{9}ClN_{4}O_{5}S$	С, Н, S	175.5 - 177	>1000	100	1000	1000
140	$4-NO_2$	CH_3	4-Cl, $3-NO_2$	$C_{11}H_9ClN_4O_5S$	С, Н, S	171.5 - 173	>1000	1	1000	1000
141	$5-NO_2$	CH_3	2-Br, 4-NO ₂	$C_{11}H_9BrN_4O_5S$	С, Н, S	158 - 160	1000	1	100	10
142	$4-NO_2$	CH_3	2 -Br, 4 -NO $_2$	$C_{11}H_9BrN_4O_5S$	Br, C, H	144 - 145	>1000	100	>1000	1000
143	Н	CH_3	4-F	$C_{11}H_{11}FN_2OS$	N, S	83-84	1000	>1000	1000	>1000
144	$5-NO_2$	\mathbf{CH}_3	4-F	$C_{11}H_{10}FN_3O_3S$	C, H, N	146.5-147.5	>400	10	10	10
145	$5-NO_2$	CH_3	3 - F	$C_{11}H_{10}FN_3O_3S$	C, H, N	123 - 124	100	10	10	1
146	$4-NO_2$	\mathbf{CH}_3	3-F	$\mathrm{C}_{11}\mathrm{H}_{10}\mathrm{FN}_{3}\mathrm{O}_{3}\mathrm{S}$	C, H, N	155 - 156	1000	100	>1000	>1000
147	$5-NO_2$	CH_3	2 - F	$\mathrm{C}_{11}\mathrm{H}_{10}\mathrm{FN}_{3}\mathrm{O}_{3}\mathrm{S}$	C, H, N	114 - 115	100	10	10	10
148	$5-NO_2$	CH_3	\mathbf{F}_{5}	$\mathrm{C}_{11}\mathrm{H}_{6}\mathrm{F}_{5}\mathrm{N}_{3}\mathrm{O}_{3}\mathrm{S}$	C, H, S	126 - 127	1000	100	10	10
149	$5-NO_2$		4-Cl	$\mathrm{C}_{11}\mathrm{H}_{10}\mathrm{ClN}_{3}\mathrm{O}_{3}\mathrm{S}$	C, H, N	163.5 - 165	25	100		10
150	Н	CH_3	2-Cl	$C_{11}H_{11}ClN_2OS$	C, H, N	87-89	>400	>1000		1000
151	$5-NO_2$	CH_3	2-Cl	$C_{11}H_{10}ClN_3O_3S$	C, H, N	$130.5 {-} 132$	< 6	100		< 1
152	$4-NO_2$	CH_3	2-Cl	$C_{11}H_{10}ClN_3O_3S$	С, Н, S	150.5 - 152.5	1000	100	>1000	>1000
153	$5-NO_2$	\mathbf{CH}_3	$3,4-Cl_2$	$\mathrm{C}_{11}\mathrm{H}_9\mathrm{Cl}_2\mathrm{N}_3\mathrm{O}_5\mathrm{S}$	N, S	128 - 129	>400	100	100	< 1
154	$5-NO_2$	CH_3	$2,4$ -Cl $_2$	$\mathrm{C}_{11}\mathrm{H}_9\mathrm{C}\mathrm{l}_2\mathrm{N}_3\mathrm{O}_3\mathrm{S}$	C, H, N	125 – 127 , 5	< 6	100	10	<1
155	$5-NO_2$	\mathbf{CH}_3	$2,5 ext{-}\mathrm{Cl}_2$	$\mathrm{C}_{11}\mathrm{H}_9\mathrm{Cl}_2\mathrm{N}_3\mathrm{O}_3\mathrm{S}$	Cl, C, H	162.5 - 164.5	1000	100	1000	1
156	$5\text{-}\mathrm{NO}_2$	CH_3	$2,6-Cl_2$	$\mathrm{C}_{11}\mathrm{H}_9\mathrm{Cl}_2\mathrm{N}_3\mathrm{O}_3\mathrm{S}$	C, H, S	140 - 141	100	10	10	1
157	$5-NO_2$		\mathbf{Cl}_{2}	$C_{11}H_6Cl_5N_3O_3S$	Cl, C, H	167 - 168	>1000	1000	>1000	
158	Н	\mathbf{CH}_3	4-Br	$C_{11}H_{11}BrN_2OS$	N, S	112 - 113	>1000	>1000	1000	1000
159	$5-NO_2$	÷	4-Br	$\mathrm{C}_{11}\mathrm{H}_{10}\mathrm{BrN}_{3}\mathrm{O}_{3}\mathrm{S}$	C, H, N	171 - 173	< 6	10		<1
160	$4-NO_2$	\mathbf{CH}_3	$4\text{-}\mathrm{Br}$	$\mathrm{C}_{11}\mathrm{H}_{10}\mathrm{Br}\mathbf{N}_{3}\mathrm{O}_{3}\mathrm{S}$	С, Н	145 - 146		10		100
161	$5-NO_2$	CH_3	3-Br	$C_{11}H_{10}BrN_3O_3S$	Br, C, H	130 - 131.5	1000	100	100	10
162	$5-NO_2$	\mathbf{CH}_3	2-Br	$\mathrm{C}_{11}\mathrm{H}_{10}\mathrm{BrN}_{3}\mathrm{O}_{3}\mathrm{S}$	Br, C, H	134 - 135	100	100	100	10
163	Н	\mathbf{CH}_3	$4-C(CH_3)_3$	$C_{15}H_{20}N_2OS \cdot CHO_{2^{4}}$	C, H, S	101103	1000	1000	100	1000
164 Mot	5-NO2 ronidazo	CH ₃	$4-C(CH_3)_3$	$\mathbf{C}_{15}\mathbf{H}_{19}\mathbf{N}_{3}\mathbf{O}_{3}\mathbf{S}$	С, Н	114-114.5	$\begin{array}{c} 1000 \\ 1000 \end{array}$	100 1	1000	10
Inter:	omuazo						1000	۲. 		

 a 0.5C₂H₂O₄ salt.

substituent being CH_3 , CH_2CH_2OH , sec-Bu, and n-Pr, respectively, were active at 10-100 ppm in the same test. More variation of activities occurred in other tests but not in a discernible pattern.

Preliminary in vivo testing on selected compounds active against Trichomonas at or below 10 ppm in vitro was conducted as follows. Compound was administered intraperitoneally to mice infected subcutaneously with T. foetus, on a standard regimen of 100 mg/kg/day for 5 days. The compound was considered active if no organisms were cultured from the subcutaneous lesion site 3 days after last injection of test compound. Several compounds which showed activity were retested at 200 mg/kg; a few were also retested at 25 and 50 mg/kg. The activity level was generally lower than that of metronidazole, the most active compounds being the nitrobenzyl sulfides, sulfoxides, and sulfones.

Conclusions

Achieving potency against a range of organisms is a complex function of structural parameters and action mechanisms. Our results indicate that maximal activity in these series against a particular organism is achieved at the expense of general efficacy. This may well be due to differing mechanisms of action for the various organisms tested; it is noteworthy in this respect that metronidazole seems to be active primarily against anaerobic organisms, including *Trichomonas*.

Experimental Section[†]

Starting Materials. 2-Mercapto-1-methylimidazole was obtained from Aldrich Chemical Co.; compounds with different alkyl groups were prepared by method A of Jones, *et al.*¹⁸

2-(α -Chloro-p-tolyl)-2-methyl-1,3-dioxolane was obtained by chloromethylation of the dioxolane derivative of acetophenone. After conversion to the thioimidazole derivative, the dioxolane ring was hydrolyzed by heating in aqueous solution. A mixture of 3-(4-nitrophenyl)propyl bromide and 3-(2,4-dinitrophenyl)propyl bromide was obtained by nitration of 3-phenylpropyl bromide and separated by chromatography on silica gel.

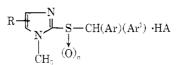
Sample Preparations. 2-(10-Carboxydecylthio)-1-methylimidazole Hydrobromide (238). 2-Mercapto-1-methylimidazole (11.4 g, 0.1 mol), 26.5 g (0.1 mol) of 11-bromoundecanoic acid, and 50 ml of *i*-PrOH were heated 18 hr on the steam bath. Et₂O was added to the residue which was filtered to yield 36.5 g (96%) of the title compound, mp 104-105°. Alkylations with benzyl halides were usually complete in 2 hr. Generally, yields in the alkylations ran in the 70-90% range. Many of the compounds crystallized analytically pure. When recrystallization was necessary, *i*-PrOH or a mixture of MeOH-*i*-PrOH were the most satisfactory solvents.

2-Hexadecyl-1-methyl-5-nitroimidazole (49). 2-Hexadecyl-thio-1-methylimidazole (56.7 g, 0.17 mol) was heated with 105 ml of HNO₃ (1.7 mol) and 45 ml of H₂O. An exothermic reaction occurred and a waxy solid separated. This was dissolved in CH₂Cl₂ and an aqueous layer was discarded. The organic solution was

 $[\]ddagger$ Melting points (uncorrected) were taken on a Thomas-Hoover capillary melting point apparatus. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.

165 166				ж—-						
165 166	R	R1	х	Formula	Analyses	$M_{p, c}$	B. subtilis	Tricho- monas	T. pyriformis	T. menta- grophytes
	H	CH_3	Н	$C_{11}H_{12}N_2O_2S$	H,	109.5-110	>1000	>1000	1000	>1000
	5-NO ₂	CH,	Н	$C_{11}H_{11}N_3O_4S$	H, N	160-161"	>1000	1000	1000	–
167	H	CH ₃	4-NO ₂	$C_{11}H_{11}N_3O_4S$		155.5 - 156	>1000	>1000	H	>1000
168	H	CH2CH2OH	4-NO ₂	$C_{12}H_{13}N_{3}O_{5}S$	C, H, N	159.8 - 160.1	>1000	1000	>1000	>1000
169	5-NO ₂	CH ₃	4-NO ₂	$C_{11}H_{10}N_4O_6S$	N, S	175.5 - 176.5	>400	100	100	100
170	H - XV?	CH,	$3-NO_2$	$C_{11}H_{11}N_{3}O_{4}S$		134 - 136	>400	1000		>1000
	5-NO2	CH_3	$3-NO_2$	$C_{11}H_{10}N_4O_6S$	N, S	177 - 179	>400	10	, .	10
172	4-NO ²	CH ₃	3-NO2	$C_{11}H_{10}N_4O_6S$	S	193.5 - 194.5	>400	10	>1000	>1000
173	5-NO3	CH ₃	2-NO2	$C_{11}H_{10}N_4O_6S$		149 - 151	100	100		10
174	H	CH3	4-CI, 3-NO ₂	$C_{11}H_{10}CIN_3O_4S$	H,	157.8-158.6	>1000	1000	>1000	1000
175	5-NO ₂	CH,	$4-CI, 3-NO_2$	C ₁₁ H ₅ CIN ₄ O ₆ S	H,	164 - 165.5	>1000	1000	>1000	10
176	H	CH_{3}	4-F	$C_{11}H_{11}FN_{2}O_{2}S$	H,	90–91	25	1000		1000
177	5-NO ₂	CH,	4-F	$C_{11}H_{10}FN_{3}O_{4}S$		130.5 - 131.5	100	100		1 ∨
178	5-NO2	CH ₃	3-F	$C_{11}H_{10}FN_{3}O_{4}S$		123.5 - 124.1	1000	1000	100	1
179	5-NO3	CH_3	2-F	$C_{11}H_{10}FN_3O_4S$	H,	129 - 131	1000	100	10	1
180	5-NO.	CH ₃	4-CI	C ₁₁ H ₁₀ CIN ₃ O ₄ S		138 - 139	400	100		10
181	H	CH_s	2-CI	C ₁₁ H ₁₁ CIN ₂ O ₂ S		95.8-97	>1000	>1000	>1000	>1000
182	5-NO2	CH3	2-CI	C ₁₁ H ₁₀ CIN ₃ O ₄ S	H,	157 - 159	400	10	100	$\stackrel{<}{\sim}$ 1
183	H	CH_3	3,4-Cl ₂	$C_{11}H_{10}Cl_2N_2O_2S$		105 - 106.5	>400	>1000		1000
184	5-NO2	CH3	3, 4 -Cl ₂	C ₁₁ H ₉ Cl ₂ N ₃ O ₄ S	N, S	138 - 140	>400	1000		>1000
185	5-NO2	CH_3	2,4-Cl ₂	C ₁₁ H ₉ Cl ₂ N ₃ O ₄ S	H,	147-148	>400	>1000		$\stackrel{\frown}{}$
186	5-NO ₂	CH ₃	$2,5-Cl_{2}$	C ₁₁ H ₉ Cl ₂ N ₃ O ₄ S	H,	183 - 184	>1000	10	1000	1
187	5-NO2	CH,	2,6-CI ₂	$C_{11}H_9Cl_2N_3O_4S$	CI, N, S	176 - 178	1000	100	100	1
188	4-NO ²	CH,	2,6-Cl ₂	$C_{11}H_9Cl_2N_3O_4S$	ŝ	206-207	>1000	1000	>1000	>1000
189 189	H;	CH,	CI	C ₁₁ H ₇ Cl ₅ N ₂ O ₂ S		218 - 219	>1000	>1000	>1000	>1000
190	H - III	CH ₃	4-Br	C ₁₁ H ₁₁ BrN ₂ O ₂ S	C, H, N	143 - 144.5	>1000	>1000	>1000	1000
191	5-NO ²	CH,	4-Br	$C_{11}H_{10}BrN_{3}O_{4}S$	н	153 - 154.5	>400	100		$\stackrel{\sim}{\sim}$
787	5-NO2	CH,	3-Br	$C_{11}H_{10}BrN_3O_4S$	ບົ	160.5 - 161.5	>1000	100	100	1
193 194	5-NU2	CH,	CF3	C12H10F3N3O4S	C, H, N	158 - 159	>400	100		$\stackrel{\frown}{}$
194	H 7 NO	CH ₃	$4-C(CH_3)_3$	$C_{15}H_{20}N_2O_2S$	H,	129 - 131	>1000	>1000	10	>1000
CG1	5-NU2	CH	$4-C(CH_3)_3$	C15H19N3O,S	Ę	136 - 137	>1000	1000	1000	>1000
197	чн	CH ₃ CH ₃	4-C6H5 2,4(CH3)2, 5-COCH3	C17H16N2O2S C15H12N2O2S	C, H, S N, S, Y	153-155 115 5-116 5	>1000	>1000	>1000	>1000

Table V


Table VI

	$R = \prod_{\substack{N \\ CH_3}} N = (CH_2)_n - X \cdot HA$												
	R	т	n	Х	HA	Formula	Analyses	Mp, °C					
198	Н	2	0	4-NO ₂	HBr	$C_{12}H_{13}N_3O_2S \cdot HBr$	C, H, Br	159–161					
199	Н	3	0	$4-NO_2$	HBr	$C_{13}H_{15}N_3O_2S \cdot HBr$	C, H, S	158.5 - 160					
200	н	3	0	$2,4-(NO_2)_2$	\mathbf{HBr}	$C_{13}H_{14}N_4O_4S \cdot HBr$	N, S	135.5 - 137					
201	Н	3	2	$2, 4 - (NO_2)_2$		$C_{13}H_{14}N_4O_6S$	C, H, N	140 - 142.5					
202	$5-NO_2$	3	0	H		$C_{13}H_{15}N_3O_2S$	C. H	7676.5					
203	$4-NO_2$	3	0	Н		$\mathrm{C}_{13}\mathrm{H}_{15}\mathrm{N}_{3}\mathrm{O}_{2}\mathrm{S}$	C, H	69-70					
204	$5-NO_2$	3	1	Н		$C_{13}H_{15}N_3O_3S$	C, H, N	76.5-78.5					
205	$5-NO_2$	3	$\overline{2}$	Н		$C_{13}H_{15}N_3O_4S$	C, H, N	93-94					

Table VII

				CH ₂ —hetero	ocycle •HA		
	$\mathbf R$	\mathbf{R}_1	Heterocycle	HA	Formula	Analyses	Mp, °C
206	Н	H	2-Furyl	HCl	$C_8H_8N_2OS \cdot HCl$	N, Cl	137.5-138
207	Н	Н	5-Nitro-2-furyl	HC1	$C_8H_7N_3O_3S \cdot HCl$	N, Cl	210–212 dec
208	Н	$CH_2CH_2CH_3$	2-Furyl		$C_{11}H_{14}N_2OS$	N, S	Liquid
209	н	CH_3	$3,5-(Cl)_2-2-furyl$	HCl	$\mathbf{C}_{9}\mathbf{H}_{8}\mathbf{Cl}_{2}\mathbf{N}_{2}\mathbf{S}_{2}\cdot\mathbf{H}\mathbf{Cl}$	N, Cl	123 - 127
210	Н	$\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}$	5-Nitro-2-furyl		$C_{11}H_{13}N_{3}O_{3}S$	N, S	Liquid
211	$\mathbf{CH}_{2}\mathbf{CH}_{3}$	CH_3	2-Furyl	HCl	$C_{11}H_{14}N_2OS \cdot HCl$	N, Cl	118 - 120
212	Н	CH_3	2-Furyl	HCl	$C_9H_{10}N_2OS \cdot HCl$	N, Cl	107 - 109
213	Н	CH_3	5-Nitro-2-furyl	HCl	$C_9H_9N_3O_3S\cdot HCl$	N, Cl	158.5–159 dec
214	Н	CH_3	2-Pyridyl	2HCl	$\mathrm{C}_{10}\mathrm{H}_{11}\mathrm{N}_3\mathrm{S}\cdot\mathrm{2HCl}$	N, S	217 - 219
215	Н	\mathbf{CH}_3	4-Pyridyl	2HCl	$C_{10}H_{11}N_3S.2HCl$	Cl, S	192 - 194
216	Н	CH_3	2-Thienyl		$\mathbf{C}_{9}\mathbf{H}_{10}\mathbf{N}_{2}\mathbf{S}_{2}$	N, S	Liquid
217	Н	$CH_2CH_2CH_3$	4-Pyridyl	2HCl	$\mathbf{C}_{12}\mathbf{H}_{15}\mathbf{N}_{3}\mathbf{S}\cdot\mathbf{2HCl}$	N, Cl	212.5-214 dec

Table VIII

	R	п	Ar	Ar^{1}	HA	Formula	Analyses	Mp, °C	Tricho- monas	T. pyriformis
218	Н	0	C ₆ H ₅	C ₆ H ₅	$C_2H_2O_4$	$C_{17}H_{16}N_2S \cdot C_2H_2O_4$	C, H, N	137.5-139	>1,000	1000
219	Н	0	C_6H_5	$4-ClC_6H_4$		$C_{17}H_{15}ClN_2S$	C, H, N	113.5 - 114.5	10,000	>1000
220	н	0	C_6H_5	$4-ClC_6H_4$	HCl	$C_{17}H_{15}ClN_2S \cdot HCl$	C, H, N	185 - 186	1,000	100
221	Η	2	C_6H_5	$4-ClC_6H_4$		$C_{17}H_{15}ClN_2O_2S$	C, H, N	138 - 139	>1,000	>1000
222	Н	0	$4-BrC_6H_4$	$4-BrC_6H_4$	HBr	$C_{17}H_{15}Br_2N_2S\cdot HBr$	Br, S	201 - 202	>1,000	1000
223	Н	0	$C_6 F_5$	C_6F_5		$C_{17}H_6F_{10}N_2S$	C, H, N	99.5-100	>1,000	>1000
224	$5-NO_2$	0	$C_6 F_5$	$C_6 F_3$		$C_{17}H_5F_{10}N_3O_2S$	N, S	126 - 128	1,000	1000
225	$5-NO_2$	1	$C_6 F_5$	$C_6 F_5$		$C_{17}H_5F_{10}N_3O_3S$	N, S	118 - 119	100	>1000
226	Н	0	9-Fluo	orenyl	HBr	$\mathrm{C}_{17}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{S}\cdot\mathrm{HBr}$	Br, C, H	227 - 228	100	10
227	Н	2	9-Flue	orenyl	$0.5(C_2H_2O_4)$	$\mathbf{C}_{17}\mathbf{H}_{14}\mathbf{N}_{2}\mathbf{O}_{2}\mathbf{S}\cdot\mathbf{CHO}_{2}$	C, H, N	160-163	>1,000	1000

washed with NaHCO₃ solution and a solid formed as a copious evolution of gas occurred. The solid was discarded and the organic layer was evaporated. The residue was triturated with MeOH. The title compound separated, 15.7 g, mp 58-60.5°. The filtrate was evaporated and the residue was dissolved in benzene and chromatographed on 2400 g of silica gel (Mallinckrodt, CC-7). From the benzene eluates an additional 3.4 g (total 30%) of the title compound was obtained. From the 2% EtOAc eluates the 4-nitro isomer, 0.8 g (1%), mp 79-80°, was obtained. Starting material was recovered from the 5% EtOAc eluates (2% recovery). From the 10% EtOAc eluates, 3.3 g (5% yield) of 2-hexadecyl sulfinyl-1-methyl-5-nitroimidazole was crystallized, mp 81-82.5°. The nitration yield in this reaction was typical. No effort was made to vary conditions and achieve maximum yields. Chromatography was often necessary to separate the 4-nitro product(s). MeOH- CH_2Cl_2 is a good solvent pair for benzylthionitroimidazoles, while hexane is useful for the alkylthio compounds.

2-Hexadecylsulfonyl-1-methyl-5-nitroimidazole (51). 2-Hexadecylthio-1-methyl-5-nitroimidazole (3.8 g, 0.01 mol) was dissolved in 15 ml of CHCl₃. *m*-Chloroperbenzoic acid (5.1 g, 0.02 mol of 67.5% material) was added with swirling and cooling. A solid formed which was separated and discarded. The filtrate was diluted with CH_2Cl_2 , washed with Na_2CO_3 solution, dried, and evaporated. The title compound crystallized, 2.8 g (67%), mp 94-95°. Yields in the oxidation of sulfides to sulfones generally were in the 70-90% range. Many of them were purified by filtration in

Table IX

				R	$= \underbrace{ \sum_{\substack{N \\ I \\ CH_3}}^{N} \sum_{\substack{j \\ O \\ i}}^{N} S - (CH_2)_m - i$	0 ∥ C—Y ∙HA		
	R	n	m	Y	HA	Formula	Analyses	Mp, °C
228 229 230 231 232 233 234	5-NO ₂ 5-NO ₂ 5-NO ₂ H H 5-NO ₂ H	0 1 2 0 0 0 1	2 2 4 4 4 4	ОН ОН ОН ОН ОН ОН ОН	HCl C₅H₅CH₂ ∣ S	$\begin{array}{c} C_7 H_9 N_3 O_4 S \\ C_7 H_9 N_3 O_8 S \\ C_7 H_9 N_3 O_6 S \\ C_9 H_{14} N_2 O_2 S \\ C_9 H_{14} N_2 O_2 S \cdot HCl \\ C_9 H_{13} N_3 O_4 S \\ C_9 H_{14} N_2 O_3 S \cdot H_2 O \cdot \\ C_8 H_{10} N_2 S \end{array}$	C, H C, H C, H C, H N, S N, S C, H	134.5-136 130-134.5 161.5-163.5 dec 84.5-85.5 109-109.5 173.5-175 148-149
					$(\mathbf{NH}_2)\mathbf{C}(\mathbf{NH})\cdot\mathbf{H}_2\mathbf{O}$			
235 236 237 238	5-NO2 H 5-NO2 H	1 2 2 0	4 4 4 10	OH OH OH OH	HBr	$egin{array}{llllllllllllllllllllllllllllllllllll$	N, S C, H N, S C, H	Liquid 109–111 141–142 104.5–105
239 240 241 242	$5-NO_2$ $5-NO_2$ $5-NO_2$ $5-NO_2$	0 0 1 2	10 10 10 10	OH OCH ₃ OCH ₃ OCH ₃		$C_{15}H_{25}N_{3}O_{4}S$ $C_{16}H_{27}N_{3}O_{4}S$ $C_{16}H_{27}N_{3}O_{5}S$ $C_{16}H_{27}N_{3}O_{6}S$	C, H N, S C, H C, H	113.5–114 80.5–82 74–76 74–78
$243 \\ 244 \\ 245 \\ 246$	H H H H	0 0 0 0	1 1 1 1	OCH ₂ CH ₃ NH ₂ NC ₄ H ₈ NHC ₄ H ₃	HBr HCl	$\begin{array}{c} C_8H_{12}N_2O_2S \cdot HBr \\ C_6H_9N_3OS \cdot HCl \\ C_{10}H_{15}N_3OS \end{array}$	N, S N, S C, H, N	128–130 139–140 Liquid 115.5–117
246 247 248 249	H H H H	$0\\0\\1\\2$	1 1 1 1	$\mathbf{N}\mathbf{H}\mathbf{C}_{6}\mathbf{H}_{5}$ $\mathbf{N}\mathbf{H}\mathbf{C}_{6}\mathbf{H}_{5}$ $\mathbf{N}\mathbf{H}\mathbf{C}_{6}\mathbf{H}_{5}$ $\mathbf{N}\mathbf{H}\mathbf{C}_{6}\mathbf{H}_{5}$	HCl 2H ₂ O	$C_{12}H_{13}N_3OS \\ C_{12}H_{13}N_3OS \cdot HCl \\ C_{12}H_{13}N_3O_2S \\ C_{12}H_{13}N_3O_2S \\ C_{12}H_{13}N_3O_3S \cdot 2H_2O$	C, H N, S C, H N, S	115.5-117 161-162.5 153-154.5 164.5-165.5 dec
$250 \\ 251 \\ 252$	H H H	0 0 0	1 1 1	$\frac{\text{NHC}_{6}\text{H}_{4}-p-\text{Cl}}{\text{NHC}_{6}\text{H}_{4}-p-\text{NO}_{2}}$ C ₆ H ₅	HCl HCl HBr	$\begin{array}{c} C_{12}T_{13}T_{3}O_{3}S & 2T_{2}O_{3}\\ C_{12}H_{12}ClN_{3}OS \cdot HCl\\ C_{12}H_{12}N_{4}O_{3}S \cdot HCl\\ C_{12}H_{12}N_{2}OS \cdot HBr \end{array}$	N, S N, S N, S N, S	182–184 240–241 dec 160–160.5
$252 \\ 253 \\ 254 \\ 255$	H H H	0 0 0	1 1 1	C_6H_4 - p -Br C_6H_4 - o -NO $_2$ C_6H_4 - p -NO $_2$	HBr HBr HBr	$\begin{array}{c} C_{12}H_{12}H_{2}OS \cdot HBr \\ C_{12}H_{11}BrN_{2}OS \cdot HBr \\ C_{12}H_{11}N_{3}O_{3}S \cdot HBr \\ C_{12}H_{11}N_{3}O_{3}S \cdot HBr \end{array}$		182.5–184.5 187.5–188.5 198–201 dec

Δ

a 1:1 $CHCl_3$ -MeOH solution through neutral alumina. This was followed by concentration and cooling.

Sulfoxides were prepared by the same method using only 1 equiv of m-chloroperbenzoic acid and careful addition with adequate cooling to avoid partial oxidation to sulfone. Chromatography in benzene-EtOAc systems on silica gel (Mallinckrodt, CC-7) was often necessary to remove traces of sulfones and m-chlorobenzoic acid. Yields were usually in the 50-80% range.

Acknowledgments. We wish to thank Dr. Seth Mizuba, Ms. Sylvia Ziecina, and Mr. Walter Pautsch for much of the biological testing and Mr. Michael Stealey and other members of the Special Synthesis Group for the preparation of intermediates.

References

- M. Hoffer, M. Mitrovic, A. Beaman, and A. Brossi, J. Med. Chem., 14, 993 (1971).
- (2) B. A. Evans and R. D. Catterall, Brit. Med. J., 146 (1971).
- (3) A. C. Cuckler, C. M. Malanga, and J. Conroy, Amer. J. Trop. Med. Hyg., 19, 916 (1970).
- (4) R. Liechti, Schweiz. Med. Wochenschr., 100, 2117 (1970).
- (5) N. V. Chari and B. N. Gadiyar, Amer. J. Trop. Med. Hyg., 19, 926 (1970); also ref 3.

- (6) W. Gyorik and R. Wenner, Praxis, 60, 1612 (1971).
- H. J. Bachmann, R. J. Shirk, H. W. Layton, and G. A. Kemp, Antimicrob. Ag. Chemother., 524 (1968).
 E. Greenberg, G. Beskid, R. Cleeland, W. F. DeLorenzo, E.
- (8) E. Greenberg, G. Beskid, R. Cleeland, W. F. DeLorenzo, E. Titsworth, H. J. Schaler, R. Richle, and Z. Brener, *ibid.*, 513 (1967).
- (9) P. N. Giraldi, V. Mariotti, G. Nannini, G. P. Tosolini, E. Dradi, W. Logemann, I. de Carneri, and G. Monti, Arzneim. -Forsch., 20, 52 (1970).
- (10) A. Staab, H. Irngartinger, A. Mannschreck, and M.-Th. Wu, Justus Liebigs Ann. Chem., 695, 55 (1966).
- (11) F. Kajfez, V. Sunjic, D. Kolbah, T. Fajdiga, and M. Oklobdzija, J. Med. Chem., 11, 167 (1968).
- (12) L. Paquette, J. Amer. Chem. Soc., 86, 4089 (1964).
- (13) N. J. Leonard and C. R. Johnson, J. Org. Chem., 27, 282 (1962).
- (14) R. C. Tweit, R. D. Muir, and S. Mizuba, J. Med. Chem., 12, 343 (1969); R. C. Tweit, R. D. Muir, S. Mizuba, and W. R. Crowley, Jr., *ibid.*, 8, 374 (1965).
- (15) K. Miura and H. K. Reckendorf, Progr. Med. Chem., 5, 320 (1967).
- (16) P. N. Giraldi, V. Mariotti, and I. de Carneri, J. Med. Chem., 11, 66 (1967).
- (17) I. de Carneri, Arzneim. -Forsch., 19, 382 (1969).
- (18) R. G. Jones, E. C. Kornfeld, K. C McLaughlin, and R. C. Anderson, J. Amer. Chem. Soc., 71, 4000 (1949).