The Synthesis of Some 8-Alkylthio-2-thiotheophyllines and 8-Alkylthio-6-thiotheophyllines¹

Albert J. Dietz, Jr., and Raymond M. Burgison

Department of Pharmacology, University of Maryland, School of Medicine, Baltimore, Maryland 21201

Received July 29, 1965

Previous investigations in this laboratory² have shown that certain 8-alkylthioxanthines possess slight anticancer activity and, unexpectedly, some central nervous system depressant activity in rats and rabbits in nontoxic doses. In this communication, the synthesis of a series of related compounds is reported, wherein the 2-oxygen or 6-oxygen of the theophylline nucleus has been replaced by sulfur. The pharmacologic properties of these compounds, shown in Table I, will be published elsewhere when the data are complete. 8-Mercapto-2-thiotheophylline (13).—To 500 ml. of 50%alcohol was added 26 g. (0.47 mole) of KOH and 80 g. (0.43 mole) of 5,6-diamino-1,3-dimethyl-2-thiouracil. Carbon disulfide (35.7 g., 0.47 mole) was then added and the mixture was refluxed for 3 hr. and filtered. The filtrate was cooled and acidified to pH 5 with glacial acetic acid giving 90 g. of 8-mercapto-2-thiotheophylline (13).^{5,6}

8-Mercapto-6-thiotheophylline (1).—To 700 ml, of 50% alcohol was added 38 g. (0.68 mole) of KOH and 102 g. (0.60 mole) of 5,6-diamino-1,3-dimethyluracil. Carbon disulfide (52 g., 0.68 mole) was then added, and the mixture was refluxed for 3 hr, and filtered. The filtrate was cooled and acidified to pH 5 with glacial acetic acid to give 8-mercaptotheophylline, m.p. 320%. To 1 l. of dry pyridine was added 80 g. (0.38 mole) of 8-mercaptotheophylline and 155.4 g. (0.7 mole) of phosphorus pentasulfide. The mixture was refluxed for 8 hr. The solution was cooled and 2 l. of water was slowly added. The solution was concentrated to about 1 l. The yellow precipitate was filtered and reprecipitated from dilute NH₄OH by the addition of dilute acetic acid. The product weighed 70 g.

Method A.—8-Mercapto-2-thiotheophylline (22.8 g., 0.1 mole) was dissolved in 300 mL of water containing 4.0 g. (0.1 mole) of NaOH. To the clear solution was slowly added 12.62 g. (0.1

 TABLE I

 Derivatives of 8-Mercapto-2-thiotheophylline and 8-Mercapto-6-thiotheophylline

							Commence of Commence				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
No.	R	\mathbf{X}	$\mathbf{X'}$	M.p., °C.	Method	Formula	Caled.	Found	Caled.	Found	Caled.	Found
1	Н	0	\mathbf{S}	335–338 dec.		$C_7H_8N_4OS_2$	36.84	36.50	3.51	3.56	24.56	25.00
2	CH_3	0	\mathbf{S}	253	А	$\mathrm{C_8H_{10}N_4OS_2}$	39.67	39.56	4.13	4.13	23.14	23.20
3	C_2H_5	0	\mathbf{s}	223	А	$\mathrm{C_9H_{12}N_4OS_2}$	42.19	42.21	4.69	4.58	21.87	21.85
4	$n-C_3H_7$	0	\mathbf{S}	231	В	$\mathrm{C_{10}H_{14}N_4OS_2}$	44.44	44.67	5.18	5.12	20.74	20.96
5	n-C ₄ H ₉	0	S	204	В	$\mathrm{C}_{11}\mathrm{H}_{16}\mathrm{N}_4\mathrm{OS}_2$	46.48	46.48	5.63	5.72	19.72	19.65
6	n-C ₅ H ₁₁	0	\mathbf{S}	176 - 177	В	$\mathrm{C_{12}H_{18}N_4OS_2}$	48.32	48.44	6.04	6.07	18.79	19.08
$\overline{7}$	n-C ₆ H ₁₃	0	\mathbf{s}	165 - 166	В	$\mathrm{C_{13}H_{20}N_4OS_2}$	50.00	50.49	6.41	6.52	17.95	18.45
8	n-C ₇ H ₁₅	0	\mathbf{S}	166 - 167	В	$\mathrm{C_{14}H_{22}N_4OS_2}$	51.33	51.75	6.75	6.72	17.18	17.38
9	n-C ₈ H ₁₇	0	\mathbf{S}	161	В	$\mathrm{C_{15}H_{24}N_4OS_2}$	52.94	53.35	7.06	7.11	16.47	16.23
10	n-C ₉ H ₁₉	0	\mathbf{S}	152	В	$\mathrm{C_{16}H_{26}N_4OS_2}$	54.24	54.75	7.34	7.46	15.82	16.04
11	n - $\mathrm{C}_{10}\mathrm{H}_{24}$	0	\mathbf{s}	151	В	$\mathrm{C}_{17}\mathrm{H}_{28}\mathrm{N}_4\mathrm{OS}_2$	55.43	55.37	7.61	7.69	15.22	15.25
12	$(CH_3)_2CH$	0	\mathbf{s}	255–256 dec.	В	$\mathrm{C_{10}H_{14}N_4OS_2}$	44.44	44.94	5.18	5.18	20.74	20.98
13	Н	\mathbf{s}	0	335 dec.		$\mathrm{C_7H_8N_4OS_2}$	36.84	36.98	3.51	3.77	24.56	24.41
14	CH_3	к	0	335	Α	$\mathrm{C_8H_{10}N_4OS_2}$	39.67	39.41	4.13	4.10	23.14	23.40
15	C_2H_5	Ľ	0	290	A	$\mathrm{C_9H_{12}N_4OS_2}$	42.19	41.86	4.69	4.65	21.87	22.18
16	$n-C_3H_7$	S	0	214 - 215	В	$\mathrm{C}_{10}\mathrm{H}_{14}\mathrm{N}_4\mathrm{OS}_2$	44.44	44.10	5.18	5.16	20.74	21.08
17	n-C ₄ H ₉	\mathbf{s}	0	214 - 215	В	$\mathrm{C}_{11}\mathrm{H}_{16}\mathrm{N}_4\mathrm{OS}_2$	46.48	46.55	5.63	5.47	19.72	19.96
18	n-C ₅ H ₁₁	н	- O	198	В	$\mathrm{C_{12}H_{18}N_4OS_2}$	48.32	48.79	6.04	6.06	18.79	18.83
19	$n-C_6H_{13}$	S	Ō	181 - 182	В	$\mathrm{C}_{13}\mathrm{H}_{20}\mathrm{N}_4\mathrm{OS}_2$	50.00	49.92	6.41	6.42	17.95	17.94
20	n-C ₇ H ₁₅	S	0	175	В	$\mathrm{C_{t4}H_{22}N_4OS_2}$	51.33	51.47	6.75	6.59	17.18	17.08
21	n-C ₈ H ₁₇	S	0	163 - 164	В	$\mathrm{C_{15}H_{24}N_4OS_2}$	52.94	53.38	7.06	6.97	16.47	16.50
22	n-C ₉ H ₁₉	\mathbf{S}	0	160	В	$\mathrm{C_{16}H_{26}N_4OS_2}$	54.24	54.01	7.34	7.04	15.82	16.32
23	n-CroHen	S	0	153 - 154	В	$C_{17}H_{28}N_4OS_2$	55.43	55.40	7.61	7.67	15.22	15.51

Experimental Section

The compounds described in Table I were prepared by reacting either 8-mercapto-2-thiotheophylline or 8-mercapto-6-thiotheophylline with the appropriate alkyl sulfate (method A) or alkyl halide (method B). Some of the required starting materials were obtained from commercial sources and others by published procedures, *viz.*, 5,6-diamino-1,3-dimethyl-2-thiouracil³ and 5,6-diamino-1,3-dimethyluracil.⁴ mole) of dimethyl sulfate. The mixture was stirred at 60° for 3 hr. The precipitate was filtered, washed with water, and recrystallized from methanol to give S-methylthio-2-thiotheophylline (14), 22.5 g.

Method B.—8-Mercapto-2-thiotheophylline 22.8 g. (0.1 mole)and butyl bromide⁷ (18.9 g., 0.125 mole) were refluxed together in 700 ml. of alcohol for 24 hr., and filtered. The filtrate was evaporated to dryness, and the residue was dissolved in dilute NH₄OH. The ammonia solution was evaporated to dryness, and the residue was extracted with acetone and cooled to give 8butylthio-2-thiotheophylline (17). The product was recrystallized from methanol.

⁽¹⁾ This work was supported by a National Cancer Institute grant (CA-05084-C5).

⁽²⁾ R. H. Goldsmith, Doctorate Dissertation, University of Maryland, School of Medicine, Department of Pharmacology, August 1964.

⁽³⁾ K. R. H. Wooldridge and R. Slack, J. Chem. Soc., 1865 (1962).

⁽⁴⁾ F. F. Blicke and H. C. Godt, J. Am. Chem. Soc., 76, 2799 (1954).

⁽⁵⁾ Melting points were taken on a Mel-Temp melting point apparatus.

⁽⁶⁾ Analysis was done by Drs. Weiler and Strauss, Oxford, England.

⁽⁷⁾ The alkyl bromide was used to prepare all but the propyl derivatives. Propyl iodide was used because of its higher boiling point.