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Chem., 40, C49 (1972); (h) J. F. Normant and M. Bourgain, Tetrahedron 
Lett., 2583 (1971). 

(8) G. M. Whitesides. C. P. Casey, and J. K. Krieger. J. Am. Chem. Soc., 93, 

as the Wittig olefin synthesis, for the further elaboration of the 
carbon skeletons of several important classes of natural 
products. Work is in progress to optimize the yields of our re- 
actions, to investigate the stereochemistry t h o r o ~ g h l y , ~ ~  to 
study the reaction of the intermediate vinylcopper complex 
with other electrophilic substrates besides a,@-unsaturated 
carbonyl compounds,24 and to apply our route to the synthesis 
of naturally occurring compounds. 
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Peri-Bridged Naphthalenes from 1,8-Dilithionaphthalene 

Sir: 
In recent years there has been an increasing interest in 

planar, aromatic compounds containing several sulfur or se- 
lenium atoms, largely in connection with the possibly useful 
electrical, magnetic, and optical properties that charge transfer 
complexes involving these donor molecules and acceptors such 
as 7,7,8,8-tetracyanoquinodimethane (TCNQ, I) may have.' 
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Figure 1. (a) Plot of log R vs T - ' / ?  (kelvin) for NDSeTCNQ compressed 
pellet. p ( R T )  = 1 X IO'  fl cm. (b)  Plot of log R vs. T- ' /*  (kelvin) for 
NDTe-TCNQ compressed pellet. p(RT) = 50 R cm. 

We wish to report a convenient, one-step synthesis of a group 
of naphthalene derivatives in which the peri positions of 1,8- 
dilithionaphthalene2 are bridged by a pair of identical group 
6 atoms. 

The method is illustrated by the facile preparation of the 
well-known naphtho[ 1,8-c,d]-1 ,2-dithiole3 (111) by the reaction 
of I I  with sublimed sulfur, as summarized in eq 1. This reaction 
proceeds readily in tetrahydrofuran solution a t  -78 O C  to give 
111 in 35-40?? yield.4 The properties of I11 obtained in this way 
agree well with those of an authentic sample of 111 prepared 
inde~endent ly .~  Its 220-MHz ' H  N M R  spectrum shows the 
expected AMX pattern, and its 70 eV mass spectrum shows 
the anticipated parent ion as its base peak a t  m/e 190. 

1 1 + s -  -78 'C, THF & 
(1) 

I11 
As summarized in eq 2, I1 reacts analogously with amor- 

phous, gray selenium to give naphtho[ 1,8-c,d]- 1 ,2-diselenole5 
(IV) as lustrous, purple crystals, mp 127-129 O C  (from hex- 
ane/methylene chloride) in 18-22% yield. The 220-MHz ' H  
N M R  spectrum of IV bears a close resemblance to that of 111, 
and the characteristic ion intensity ratios of the parent mo- 
lecular ions in its 70 eV mass spectrum (m/e (int.) observed, 

278 (4), 279 ( 5 ) ,  280 (18), 281 ( lo ) ,  282 (47), 283 (32), 284 
(88), 285 (23), 286 ( loo) ,  287 (19), 288 (39), 289 ( 5 ) ;  calcu- 
lated, 278 (4), 279 ( 5 ) ,  280 (20), 281 (14), 282 (51), 283 (31), 
284 (88), 285 (15), 286 ( loo) ,  287 (1 l ) ,  288 (32), 289 (4)) 
confirms the presence of two selenium atoms.6 

I1 + Se - -78"C,THF a 
(2) 

rv 
The reaction between I1 and powdered tellurium, as sum- 

marized in eq 3, produces naphtho[ 1 ,S-c,d]- 1 ,2-ditellurole7 
(V) as metallic, greenish needles, mp 2 12-2 14 O C (from hex- 
ane/carbon disulfide) in 8-12% yield. Once more, the IH 
N M R  shows an AMX pattern, and the 70 eV mass spectrum 
of the molecular ion cluster of V (m/e (int.) observed, 373 (2), 
374 (7), 375 ( 5 ) ,  376 (17), 377 (16), 378 (36), 379 (26), 380 
(67), 381 (30), 382 ( loo) ,  383 ( l l ) ,  384 (92), 385 (9), 386 
(50 ) ,  387 ( 5 ) ;  calculated, 373 (2), 374 (6), 375 ( 9 , 3 7 6  (17), 
377 (15), 378 (36), 379 (25), 380 (66), 381 (28), 382 ( loo) ,  
383 (1 l ) ,  384 (93), 385 ( lo) ,  386 (51), 387 (6)) provides good 
support for its composition.h 

Te- Te 
I1 + Te -- 

-780c THF A4 (3) 

Deeply colored 1 : 1 donor-acceptor complexes of IV and V 
are formed readily with I by mixing hot equimolar solutions 
of the components in acetonitrile and allowing the adducts to 
crystallize. The compressed pellet conductivities of these new 
T C N Q  adducts were measured a t  low fields, thus yielding 
ohmic results. Plots of resistivity vs. temperature are shown 
in Figures l a  and lb.  A straight line plot of the logarithm of 
resistance vs. T-'12 is observed over a large temperature range 
by the diselenole complex (NDSe-TCNQ) but not by the di- 
tellurole analogue (NDTe-TCNQ). The slope of the line yields 
To, a measure of activation energy for conductivity.8 Figure 
1 b reveals that NDTe-TCNQ appears to be metallic a t  room 
t e m p e r a t ~ r e . ~  Measurements on single crystals should verify 
this preliminary observation. 

All three of these bridged naphthalenes react rapidly with 
methyllithium in tetrahydrofuran; subsequent alkylation of 
the products, however, revealed that the reactions followed 
somewhat different courses. In the case of 111, 1,8-bisthio- 
methylnaphthalene (VI) ,  (mp 84-85 OC, lit. 84 OC)Io is the 
sole organic product. Under the same conditions IV yields 
1,8-bisselenomethylnaphthalene (VII)  and l-selenomethyl- 
8-methylnaphthalene'' (VIII)  in a ratio of 4.1. In the case of 
V, the major product is 1 ,8-dimethylnaphthalene".'2 (IX); 
a trace of perylene (X) is also formed.I3 

X Y  
I 1  w 

VI, X,Y = SCH, X 
VII, X,Y = SeCH, 

VIII, X = SeCH,; Y = CH, 
IX, X,Y = CH, 

There are several mechanistic questions raised by this work, 
and many opportunities for synthesis present themselves; we 
are continuing our studies in this area. 
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Redox Reactions of Di-p-oxo Bridged Binuclear 
Manganese(1V) and -([It) Complexes 

Sir: 

Although manganese is essential for the oxygen evolution 
process in photosynthesis,' its chemical role in photosystem-I1 
remains uncertain. Furthermore, the chemical environment 
around the manganese ion is not known, which precludes the 
rational design of model compounds. 

In the mechanism proposed by Kok2 and supported by flash 
photolysis data,3 four discrete one-electron steps lead to oxygen 
evolution. Because of a multiplicity of oxidation states for 
manganese and the associated coordination chemistry, most 
investigators4 believe its essential role is as a redox catalyst. 

Several model ligand systems have been suggested for 
manganese in photosystem-11, including one with manganese 
bound to an N4 macrocyclic ligand.5 Various di-p-oxo, di-M- 
hydroxo, and p-oxo-p-hydroxo binuclear manganese species 
also have been proposed as photosystem-I1 models.6-'o An 
important test of the merit of model systems is the thermody- 
namics of their redox reactions. 

The di-p-oxo bridged binuclear manganese complexes, te- 

C 
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Figure 1. Cyclic voltammograms in 0.1 M TPAP-acetonitrile at a platinum 
electrode of (a) 0.5 mM [Mnz'"~'"Oz(phen)4](C104)4 ( I ) ,  (b )  0.5 m M  
[Mn~'11.'v0~(bpy)4](C10~)3 ( 2 ) ,  and (c) 0.5 m M  2 after electrolysis a t  
+1.45 V vs. SCE. Scan rate, 0.1 V/s .  

trakis( 1 ,lo-phenanthro1ine)di-p-oxo-dimanganese(IV, IV) 
perchlorate, [Mn2'v~ 'vO~(phen)j]  (C104)4 ( l ) ,  and tet- 
rakis( 2,2'-bipyridyl)di-pL-oxodimanganese( 111, IV) perchlorate, 
[Mn211'JV02(bpy)4](C104)3] (2), have been prepared and 
partially characterized.' Such complexes have proven to 
be useful starting materials for the present oxidation-reduction 
investigations. The crystal structure12 of 2 includes distinct 
manganese-oxygen bond lengths for the trivalent and tetra- 
valent manganese ions. The magnetic susceptibilities of 113 and 
212 are less than expected for the spin-only condition and in- 
dicate antiferromagnetic coupling of the manganese ions across 
the di-p-oxo bridge. The electrochemical redox reactions and 
solution magnetic susceptibilities of 1 and 2 are the subject of 
the present communication. 

The cyclic voltammogram of 1 (Figure l a )  exhibits two 
electrochemically reversible redox reactions. Controlled po- 
tential coulometry establishes that each wave is a one-electron 
process; these reactions are summarized in Scheme I. Elec- 
trochemical reduction of [Mnz"'~'v02(phen)4]3+ (3)14 to 
[ Mn~"'~'' '02(phen)4]2f is followed by a coupled chemical 
reaction. Electrolysis of 1 (a red solution) at + 1 .OO V vs. SCE 
yields a green solution that appears identical with a solution 
of 3. 

The cyclic voltammogram for 2 (Figure 1 b) includes a re- 
versible anodic couple; the redox reactions are summarized in 
Scheme I and are supported by controlled potential coulome- 
tric measurements. The coupled chemical reaction that occurs 
after reduction of 2 is much faster than in the corresponding 
reaction after the second reduction of 1. Comparison of anodic 
and cathodic peak currents confirms that a coupled chemical 
reaction also follows the oxidation of 2. The pseudo-first-order 
rate constant, measured by the method of Nicholson and 
Shain,Is-l6 is 0.02 s - ' .  Anodic electrolysis of 2 (a green solu- 
tion) at +1.45 V causes some decomposition, indicated by the 
cyclic voltammogram of the product solution (Figure IC), and 
yields a reddish brown solution. 

The solution-phase magnetic susceptibilities of 2 and of 314 
have been determined by the NMR at ambient 
temperature; for 2, peff = 2.56 f 0.1 1 p~ (uncorrected) com- 
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