Monatshefte für Chemie

© by Springer-Verlag 1978

Über die 2-(1,2,3,4-Tetrahydro-4,4,6-trimethyl-2-thioxopyrimidin-1)-benzoesäure und das 2,3,4,4a-Tetrahydro-3,3,4a-trimethyl-1-thioxo-1H, 6H-pyrimido[1,6-a][3,1]-benzoxazin-6-on

Über Heterocyclen, 55. Mitt.

Von

Gustav Zigeuner, Klaus Schweiger, Monika Baier und Alfred Fuchsgruber

Institut für Pharmazeutische Chemie, Universität Graz, Österreich

(Eingegangen am 25. Januar 1977)

2-(1,2,3,4-Tetrahydro-4,4,6-trimethyl-2-thioxopyrimidine-1)-benzoic acid and 2,3,4,4 a-tetrahydro-3,3,4 a-trimethyl-1-thioxo-1H,6H-pyrimido[1,6—a][3,1]-benzoxazine-6-one

Dimethyloxobutylisothiocyanate 1 reacts with anthranilic acid to a mixture of much pyrimidobenzoxazine $\bf 5\,a$ and less tetrahydrothioxopyrimidinebenzoic acid $\bf 3\,a$ (and tautom. $\bf 4\,a$ resp.). By treatment with methanolic KOH solution $\bf 5\,a$ is converted into $\bf 3\,a$, $\bf 4\,a$. At refluxing temperature $\bf 3\,a$, $\bf 4\,a$, and $\bf 5\,a$ resp., are rearranged in DMF into thioxopyridineanthranilic acid $\bf 7\,a$, thioxopyridineanthranilic dimethylamined $\bf 7\,d$ and dimethylaminodihydro- $\bf 2(1H)$ -pyridineanthranilic nitrile $\bf 12$ are formed from pyrimidinebenzoic esters $\bf 3\,b$, $\bf 4\,b$, $\bf 3\,c$, $\bf 4\,c$ and pyrimidinebenzoic nitrile $\bf 10$, $\bf 11\,resp.$, by boiling in DMF. The reaction of $\bf 1\,$ with methyl anthranilate leads to $\bf 7\,b$ and "triazapentaphene" $\bf 9.$ o-Aminobenzoic nitrile HCl reacts with $\bf 1\,$ to pyrimidinequinazoline $\bf 5\,b$.

Bei Reaktion des 3-Oxobutylisothiocyanates 1 mit Anthranilsäure in wäßrig saurem¹ bzw. wäßrigem Medium² in der Wärme, beim Verschmelzen der Komponenten bei $110^{\circ 2, 3}$ bzw. beim Stehen der Komponenten in ätherischer Lösung² entsteht als Hauptprodukt nicht die 2-(Tetrahydro-2-thioxopyrimidin-1)-benzoesäure 3 a¹ bzw. das Pyrimidobenzothiazinon 6 a², ³, sondern das Tetrahydro-1-thioxopyrimidobenzoxazinon 5 a⁴. 5 a ist, wie nun weitere Untersuchungen ergaben, stets von einer geringen Menge Tetrahydrothioxopyrimidinbenzoesäure 3 a bzw. Methylenverbindung 4 a begleitet. Neben 3 a, 4 a findet sich nach dünnschichtehromatographischen Untersuchungen noch eine

⁸ Monatshefte für Chemie, Vol. 109/1

weitere Säure in allerdings sehr geringen Mengen, bei welcher es sich um die 2-(Hexahydro-6-hydroxy-2-thioxopyrimidin-1)-benzoesäure 2 handeln dürfte.

Das nach dem obenangeführten Verfahren 1-3 bzw. aus 1 und Anthranilsäure in Xylol⁴ anfallende Pyrimidobenzoxazin 5 a enthält nach der Reinigung aus Äthanol stets ungefähr 8% Thioxopyrimidinbenzoesäure 3 a, 4 a. Chromatographisch reines Pyrimidobenzoxazin 5 a kann durch Umkristallisieren des Gemisches von 5 a mit 3 a, 4 a aus Äthanol mit wenig konz. Salzsäure erhalten werden. Es geht beim Stehen bei 20° im Verlauf von 7 Tagen in ein Gemisch von 92% 5 a und 8% 3 a, 4 a über.

Reine Pyrimidinbenzoesäure 3 a, 4 a wurde von uns durch Stehen von 5 a bzw. den Pyrimidinbenzoesäureestern 3 b, 4 b, 3 c, 4 c in methanolischer Kalilauge bei 20° und Neutralisation mit 1N-Essigsäure dargestellt; die Reinigung erfolgte durch Umfällen aus einproz. wäßriger KOH mit einproz. Essigsäure. 3 a, 4 a gehen beim Stehen im Vakuum bei 20° nach 7 Tagen zu 8%, nach 14 Tagen zu 24% in das Pyrimidobenzoxazinon 5 a über. Nach Lösen von 3 a, 4 a in absolutem Dioxan sind nur mehr 30% 3 a, 4 a vorhanden; auch beim Umkristallisieren aus Äthanol erfolgt teilweise Übergang in das Pyrimidobenzoxazin 5 a. Durch Zugabe von wenig Säure wird diese Umwandlung beschleunigt.

Über den Bildungsmechanismus von 3 a, 4 a bzw. 5 a kann folgendes gesagt werden: Die Umsetzung des Oxobutylisothiocyanates 1 mit Anthranilsäure wird sicherlich über den entsprechenden Oxobutylthioharnstoff verlaufen, welcher sich dann zur Hexahydro-6-hydroxypyrimidinbenzoesäure 2 cyclisiert. Für die Weiterreaktion von 2 kommen zwei Möglichkeiten in Betracht; einerseits könnte 2, wie andere 6-Hydroxythioxopyrimidine, unter Wasserabspaltung in 3 a, 4 a übergehen, wobei dann Lactonbildung unter Anlagerung der Carboxylgruppe an die Doppelbindung des Pyrimidinringes (3 a) bzw. die Methylengruppe (4 a) zu 5 a erfolgen würde. Andererseits wäre denkbar, daß 2 unter Lactonringbildung unmittelbar in 5 a übergeht und 3 a, 4 a aus 5 a im Rahmen der beschriebenen Gleichgewichtseinstellung gebildet werden.

Einwirkung von Dimethylformamid auf die Thioxopyrimidinbenzoesäure 3 a, 4 a bzw. das Tetrahydrothioxopyrimidobenzoxazinon 5 a

Charakteristisch für den Verlauf der Einwirkung von siedendem Dimethylformamid (DMF) auf die Pyrimidinbenzoesäure 3 a, 4 a, das Pyrimidobenzoxazinon 5 a bzw. die Thioxopyridylanthranilsäure 7 a sind die Methylpyrimidin—Pyridin-Umlagerung 5 bzw. Aminolysen durch DMF sowie die Konzentrationsabhängigkeit dieser Reaktionen und der Reaktionsgeschwindigkeiten. Während aus 3 a, 4 a und DMF (Mengenverhältnis 1:10, 1:33, 1:100, Reaktionsdauer 3,5 bzw. 4,5 bzw. 9 Stdn.) annähernd gleiche Ausbeuten an Pyridylanthranilsäure 7 a

erhalten werden konnten, tritt mit steigender Konzentration an Pyrimidinbenzoesäure 3 a, 4 a die Bildung des Dimethylaminodihydropyridinthions 8 in den Vordergrund; im entgegengesetzten Fall entsteht mehr Thioxotetrahydropyridylanthranilsäuredimethylamid 7 d.

Die seinerzeit mitgeteilten Ergebnisse⁴ über die Einwirkung von DMF auf das Pyrimidobenzoxazinon $\mathbf{5}$ a müssen korrigiert werden. Setzt man $\mathbf{5}$ a in siedendem DMF im Mengenverhältnis $1:10,\ 1:33$ bzw. 1:100 um, so ist die Reaktion nach 3,5 bzw. 4,5 bzw. 9 Stdn. beendet. In den Reaktionsprodukten finden sich jeweils größere Anteile an Pyridylanthranilsäure $\mathbf{7}$ a, zusätzlich im erstgenannten Ansatz (1:10) noch viel $\mathbf{8}$ neben Spuren $\mathbf{7}$ d, im zweiten bzw. dritten wenig $\mathbf{8}$ und mehr $\mathbf{7}$ d bzw. nur viel $\mathbf{7}$ d.

Untersuchungen über die Einwirkung von DMF auf die Thioxotetrahydropyridylanthranilsäure 7 a ergaben, daß diese bei Einsatz der

Komponenten im Mengenverhältnis 1:10 bzw. 1:33 in $3\frac{1}{2}$ Stunden zu 38% bzw. in geringem Ausmaß, nach 9 Stdn. zu 50% (1:33) bzw. 16% (1:100) in das 4-Dimethylaminodihydro-2(1H)-pyridinthion 8 übergeht. Die Bildung des Pyridylanthranilsäuredimethylamides 7 d war in keinem Fall zu beobachten.

Allgemein kann über den Verlauf der Einwirkung von *DMF* auf 3 a, 4 a bzw. 5 a bzw. 7 a gesagt werden, daß die Umwandlung von 5 a in 3 a, 4 a sowie die Umlagerung zu den Pyridinverbindungen 7 a, 8 bzw. die Umwandlung von 7 a in 8 bei höherer Konzentration begünstigt sind, während die Bildung von 7 d aus 3 a, 4 a bzw. von 7 d aus 5 a mit steigender Verdünnung betont wird.

Die Einwirkung von DMF auf 5 a verläuft bei höherer Konzentration unter Ringöffnung von 5 a zu 3 a, 4 a, Umlagerung von 3 a, 4 a zur Pyridylanthranilsäure 7 a und teilweiser Umwandlung von 7 a in 8. Mit steigender Verdünnung tritt als Konkurrenzreaktion eine Aminolyse von 5 a durch DMF zum Pyrimidinbenzoesäuredimethylamid 3 d, 4 d ein, welches dann in 7 d umgelagert wird. Die Pyrimidinbenzoesäure 3 a, 4 a geht bei hoher Konzentration überwiegend in die Pyridylanthranilsäure 7 a und in der Folge z. T. in 8 über. Mit fallender Konzentration an 3 a, 4 a tritt Ringschluß zu 5 a als Konkurrenzreaktion ein, wobei 5 a dann teilweise durch DMF in 3 d, 4 d und dieses weiter in 7 d übergeführt wird.

Auch die Thioxopyrimidinbenzoesäureester 3 b, 4 b, 3 c, 4 c gehen in siedendem *DMF* die Methylpyrimidin—Pyridinumlagerung ein; die entsprechenden Tetrahydro-2-thioxopyridylanthranilsäureester 7 b, c entstehen hier in guten Ausbeuten. Die Darstellung von 3 b, 4 b, 3 c, 4 c erfolgt am besten aus dem Oxobutylisothiocyanat 1 und den jeweiligen Anthranilsäureestern in ätherischer Lösung. In siedendem Xylol tritt sehr rasch Umlagerung von 3 b, 4 b, 3 c, 4 c zu 7 b, c ein, so daß hier 3 b, 4 b, 3 c, 4 c nicht rein erhalten werden können. Die früher gemachte Angabe⁴, wonach 3 c, 4 c in siedendem *DMF* nicht verändert würden, entspricht nicht den Tatsachen.

Eine interessante Reaktion kann bei direktem Erhitzen von 1 mit Anthranilsäuremethylester beobachtet werden; hier entsteht unter Weiterreaktion von 7 b mit Anthranilsäuremethylester in geringer Ausbeute das 6,7-Dihydro-15-hydroxy-7,7-dimethyl-[2,3]benzo[1,6]naphthyridino[5,6—b]chinazolin-9-on (ein "5,7 a,13-Triazapentaphen"-derivat) (9). Über die Synthese von 9 sowie analogen Verbindungen soll in Kürze berichtet werden.

Ebenso wie die Pyrimidinbenzoesäureester 3 b, 4 b, 3 c, 4 c kann auch das Thioxopyrimidinbenzoesäurenitril 10, 11 aus 1 und Anthranilsäurenitril in ätherischer Lösung synthetisiert werden. 10, 11 gehen in siedendem DMF leicht die Umlagerung zum Tetrahydro-2-thioxopyri-

dylanthranilsäurenitril 12 ein. Die von Gill et al. 2 gemachte Angabe, wonach 1 mit dem Hydrochlorid des Anthranilsäurenitrils zum Trimethylimidopyrimidobenzothiazin 6 b reagieren soll, konnte nicht bestätigt werden. Vielmehr entsteht hier das bereits aus 1 mit Anthranilsäureamid erhaltene Tetrahydrotrimethylthioxopyrimidochinazolinon 5 b 4 .

Dem Jubiläumsfonds der Oesterreichischen Nationalbank danken wir für die Unterstützung dieser Arbeit.

Experimenteller Teil

- 1. 2-(1,2,3,4-Tetrahydro-4,4,6-trimethyl-2-thioxopyrimidin-1)-benzoesäure (3 a) bzw. 2-(Hexahydro-4,4-dimethyl-6-methylen-2-thioxopyrimidin-1)-benzoesäure (4 a)
- 3 g KOH und 2,76 g $\bf 5$ $\bf a$ werden in 30 ml 70proz. Methanol bis zur klaren Lösung gerührt. Man neutralisiert mit 2N-Essigsäure, wobei $\bf 2,1$ g $\bf 3$ $\bf a$, $\bf 4$ $\bf a$ kristallin anfallen. Nadeln aus 1proz. wäßr. KOH/1proz. Essigsäure. Schmp. $\bf 214^{\circ}$.

 $C_{14}H_{16}N_2O_2S$. Ber. C 60,85, H 5,84, N 10,14, S 11,60. Gef. C 60,73, H 5,85, N 9,98, S 11,57.

2. Gehaltsbestimmung der 2-Thioxopyrimidinbenzoesäure **3 a**, **4 a** und des 2,3,4,4 a-Tetrahydro-3,3,4 a-trimethyl-1-thioxo-1H,6H-pyrimido[1,6—a]-[3,1]-benzoxazin-6-ons (**5 a**)

Man suspendiert etwa 100 mg 3 a, 4 a bzw. 5 a in 30 ml karbonatfreiem destilliertem $\rm H_2O$, fügt 10 ml 0.1N-NaOH zu, rührt 3 Min. und titriert mit 0.1N-HCl gegen Phenolphthalein zurück.

Titration nach	Proz. 3 a, 4 a	Proz. 5 a
12 Stdn.	99,46	0.54
24 Stdn.	97,30	2,70
48 Stdn.	94.10	5,90
$5~{ m Tagen}$	93,36	6,64
7 Tagen	92,30	7,70
14 Tagen	$76,\!20$	23,80

Pyrimidinbenzoesäure 3 a, 4 a

Purimidobenzoxazinon 5 a

Titration nach	Proz. 5 a	Proz. 3 a, 4 a
$12~\mathrm{Stdn}.$	95,72	4,28
$24 \mathrm{\ Stdn}$.	94,33	5,67
48 Stdn.	$94,\!27$	5,73
$5~{ m Tagen}$	93,60	6,40
$7~{ m Tagen}$	91,62	8,38
14 Tagen	91,60	8,40

3. Umsetzung der 2-Thioxopyrimidinbenzoesäure 3 a, 4 a, des 2,3,4,4 a-Tetrahydro-3,3,4 a-trimethyl-1-thioxo-1H,6H-pyrimido[1,6—a][3,1]-benzoxazin-6-ons (5 a) und der N-(1,2,5,6-Tetrahydro-6,6-dimethyl-2-thioxo-4-pyridyl)-anthranilsäure (7 a) in siedendem DMF

1 g 3 a, 4 a bzw. 5 a bzw. 7 a werden in unterschiedlicher Menge DMF während einer bestimmten Zeit unter Rückfluß zum Sieden erhitzt. Hierauf wird im Hochvak. eingedampft und mit Äthanol angerieben. Kristallin anfallende Produkte bzw. der ölig-amorphe Rückstand werden in CHCl3 aufgenommen und mit 2N-Na₂CO₃-Lösung ausgeschüttelt. Aus der wäßr. Phase scheidet sich nach Ansäuern 7 a kristallin ab. Die org. Phase wird über Na₂SO₄ getrocknet, zur Trockne eingedampft und der Rückstand mit Äthanol durchgerieben. 7 d bzw./und 8 fallen entweder kristallin an und werden durch spektroskopische Methoden (NMR) quantitativ bestimmt oder dünnschichtehromatographisch (DC) nachgewiesen.

Ausgangskörper	$\operatorname{g} DMF$	Stdn .	Endprodukte in Proz.		
			7 a	7 d	8
3 a, 4 a	10	3,5	29	0,9	26
3 a, 4 a	33	4,5	29	6,7	DC
3 a, 4 a	100	9	22	21	DC
5 a	10	3,5	16,5	DC	49,7
5 a	33	4,5	42	18,3	8,7
5 a	100	9	16,3	26,6	
7 a	10	3,5	55,8	-	38,3
7 a	33	4,5	77		DC
7 a	33	9	27		50
7 a	100	9	72	_	16,7

N-(1,2,5,6-Tetrahydro-6,6-dimethyl-2-thioxo-4-pyridyl)-anthranilsäure (7 a)

Nach IR- und NMR-Spektrum identisch mit nach ${\it Zigeuner}$ et al.4 dargestelltem 7 a.

N-(1,2,5,6-Tetrahydro-6,6-dimethyl-2-thioxo-4-pyridyl)-anthranilsäure-N,N-dimethylamid (7 **d**)

Nach IR- und NMR-Spektrum identisch mit einem nach Zigeuner et al. 4 dargestellten 7 d.

4-Dimethylamino-5,6-dihydro-6,6-dimethyl-2(1H)-pyridinthion (8)

Das so erhaltene Dihydropyridinthion 8 ist mit dem auf anderen Wegen erhaltenen Produkt 84 nach IR- und NMR-Spektrum identisch.

4. Umsetzung von 1,1-Dimethyl-3-oxobutylisothiocyanat 1 mit Anthranilsäureestern und o-Aminobenzonitril

Man erhitzt 9,4 g Isothiocyanat 1 mit der entsprechenden Menge Anthranilsäureester [Methylester (AME), Äthylester (AAE)] bzw. o-Aminobenzo-

nitril (ABN) in 120 ml Äther unter Rückfluß zum Sieden. Sodann dampft man im Vak. zur Trockne ein und nimmt in Äthanol auf.

- a) 8,7 g AME, 60 Stdn., Ausb. 12,7 g 3 b, 4 b.
- b) 10 g $A\ddot{A}E$, 46 Stdn., Ausb. 4,6 g 3 c, 4 c.
- c) 3,6 g ABN, 72 Stdn., Ausb. 6,1 g 10, 11.
- a) 2-(1,2,3,4-Tetrahydro-4,4,6-trimethyl-2-thioxopyrimidin-1)-benzoesäuremethylester (3 b) bzw. 2-(Hexahydro-4,4-dimethyl-6-methylen-2-thioxopyrimidin-1)-benzoesäuremethylester (4 b)
- Schmp. 178—180°, Nadeln aus Äthanol, $C_{15}H_{18}N_2O_2S^*$.
- b) 2-(1,2,3,4-Tetrahydro-4,4,6-trimethyl-2-thioxopyrimidin-1)-benzoesäureäthylester (3 c) bzw. 2-(Hexahydro-4,4-dimethyl-6-methylen-2thioxopyrimidin-1)-benzoesäureäthylester (4 c)
- Schmp. 178—180°, Prismen aus Äthanol, $C_{16}H_{20}N_2O_2S^{**}$.
- c) 2-(1,2,3,4-Tetrahydro-4,4,6-trimethyl-2-thioxopyrimidin-1)-benzonitril (10) bzw. 2-(Hexahydro-4,4-dimethyl-6-methylen-2-thioxopyrimidin-1)-benzonitril (11)
- Sehmp. 220—222°, Nadeln aus Äthanol, C₁₄H₁₅N₃S**.
- 5. 2,3,4,4 a-Tetrahydro-3,3,4 a-trimethyl-1-thioxo-1H,6H-pyrimido-[1,6—a]-chinazolin-6-on (5 b)
- 3 g o-Aminobenzonitril·HCl und 3 g 1 werden im Ölbad auf 110° 1 Stde. erhitzt, nach Erkalten mit Äthanol durchgerieben und das Rohprodukt aus Eisessig umkristallisiert; Ausb. 4 g, Schmp. 285°. Das so erhaltene Pyrimidochinazolinon 5 b ist mit dem auf anderem Weg erhaltenen Produkt 5 b anch IR- und NMR-Spektrum identisch.
- 6. Umlagerung der 2-Thioxopyrimidin-1-benzoesäurederivate 3 b, 4 b, 3 c, 4 c und 10, 11 in die entsprechenden 2-Thioxo-4-pyridyl-anthranilsäurederivate 7 b, 7 c und 12
- 2 g 2-Thioxopyrimidinbenzoesäureester 3 b, 4 b, 3 c, 4 c bzw. Benzonitril 10, 11 werden in 60 ml DMF bis zur Beendigung der Reaktion unter Rückfluß zum Sieden erhitzt, das DMF im Vak. entfernt und der Rückstand mit 2-Propanol durchgerieben.
 - a) N-(1,2,5,6-Tetrahydro-6,6-dimethyl-2-thioxo-4-pyridyl)-anthranilsäuremethylester (7 b)
 - 3 Stdn., Ausb. 0,85 g, Schmp. 205—206°, Nadeln aus 2-Propanol.
 - b) N-(1,2,5,6-Tetrahydro-6,6-dimethyl-2-thioxo-4-pyridyl)-anthranilsäure-äthylester (7 c)
- 20 Stdn., Ausb. 0,95 g, Schmp. 185—187°, Nadeln aus 2-Propanol, $C_{16}H_{20}N_2O_2S^{**}$.
 - * Durch Analyse (CH, N, O) gesichert.
 - ** Durch Analyse (CH, N, S) gesichert.

- c) N-(1,2,5,6-Tetrahydro-6,6-dimethyl-2-thioxo-4-pyridyl)-anthranilsäurenitril (12)
- 60 Stdn., Ausb. 1 g, Schmp. 230° (Zers.), Rhomben aus 2-Propanol, $\rm C_{14}H_{15}N_{3}S^{**}.$
- 7. 6,7-Dihydro-15-hydroxy-7,7-dimethyl-[2,3]benzo[1,6]naphtyridino-[5,6—b]chinazolin-9-on, **9** (ein Triazapentaphenderivat)
- 15,7 g Isothiocyanat 1 werden mit 15,1 g Anthranilsäuremethylester 48 Stdn. am Wasserabscheider zum Sieden erhitzt. Nach dem Abkühlen filtriert man die Lösung, dampft im Vak. zur Trockne ein und nimmt den Rückstand in Äthanol auf; Rohausb. 3,1 g 9, Nadeln aus Äthanol, Schmp. 252—254°.

 $C_{21}H_{17}N_3O_2$. Ber. C 73,45, H 4,99, N 12,24, O 9,32. Gef. C 73,11, H 5,15, N 12,28, O 9,34.

NMR-Spektren (τ -Werte in ppm, bezogen auf 3-(Trimethylsilyl)-propionsäure- d_4 -Natriumsalz als innerer Standard):

- **3 a, 4 a**: COOH 2,50 (sehr breit); NH 1,15 (b) bzw. 1,35 (b); aromat. H 2,00—2,90 (m); = CH 5,20 (s); = CH₂ 5,85 (s) bzw. 6,50 (s); CH₂ 7,50 (s); CH₃ 8,60 (s); 2 CH₃ 8,75 (s); in DMSO liegt zu 90% die Methylenform **4 a** vor.
- **3 b**, **4 b**: Aromat. H + NH 2,00—2,90 (m); =CH 5,20 (s); =CH₂ 5,85 (s) bzw. 6,30 (s); O—CH₃ 6,20 (s); CH₂ 7,45 (s); CH₃ 8,50 (s); 2 CH₃ 8,65 (s) bzw. 8,70 (s).
- 3 c, 4 c: Aromat. H + NH 1,90—2,90 (m); =CH 5,20 (s); OCH₂CH₃ 5,70 (q) bzw. 8,70 (t); CH₃ 8,50 (s); 2 CH₃ 8,65 (s); in CDCl₃ liegt zu über 90% die Methylform 3 c vor.
- **7 b**: NH 0,55 (b); aromat. H + NH 1,85—3,00 (m); =CH 3,60 (s); O—CH₃ 6,10 (s); CH₂ 7,50 (s); 2 CH₃ 8,60 (s).
- 7 c: NH 0,60 (b); NH 2,20 (b); aromat. H 1,90—3,00 (m); = CH 3,65 (s); O—CH₂CH₃ 5,70 (q) bzw. 8,60 (t); CH₂ 7,50 (s); 2 CH₃ 8,65 (s).
 - 9: OH— 7,00 (b); aromat. H 1,60—2,60 (m); CH₂ 6,75 (s); 2 CH₃ 8,15 (s).
- **10**, **11**: NH 0,75 (b) bzw. 0,95 (b); aromat. H 2,00—2,60 (m); =CH 5,00 (s); =CH₂ 5,70 (s) bzw. 6,50 (s); CH₂ 7,40 (s); CH₃ 8,50 (s); 2 CH₃ 8,65 (s).
- 12: NH 1,45 (b); aromat. H + NH 1,85—2,60 (m); =CH 4,70 (s); CH₂ 7,35 (s); 2 CH₃ 8,65 (s).

IR-Spektren:

- 3 a, 4 a: NH 3200 cm $^{-1}$; OH (assoz.) 2800—2500 cm $^{-1}$; C=O 1680 cm $^{-1}$; C=C 1695 cm $^{-1}$ (endocyclisch); C=C 1640 cm $^{-1}$ (exocyclisch); Aromat 1600, 1580, 1495 cm $^{-1}$; Thioamid 1570 cm $^{-1}$.
- **3 b**, **4 b**: NH 3190 cm⁻¹; C=O 1730 cm⁻¹; C=C 1695 cm⁻¹ (endocyclisch); C=C 1635 cm⁻¹ (exocyclisch); Aromat 1600, 1575, 1490 cm⁻¹; Thioamid 1540 cm⁻¹.
- 3 c, 4 c: NH 3200 cm⁻¹; C=O 1725 cm⁻¹; C=C 1695 cm⁻¹ (endocyclisch); C=C 1640 cm⁻¹ (exocyclisch, wenig intensiv); Aromat 1595, 1575, 1490 cm⁻¹; Thioamid 1530 cm⁻¹.
- **7 b**: NH 3300 bzw. 3180 cm^{-1} ; C=O 1690 cm⁻¹; Aromat, C=C, Thioamid 1615, 1575, 1515 (breit) cm⁻¹.
- 7 c: NH 3300 bzw. 3180 cm⁻¹; C=O 1685 cm⁻¹; Aromat, C=C, Thio-amid 1615, 1600, 1575, 1510 (breit) cm⁻¹.

- 9: C=O 1695 cm⁻¹; Aromat, C=C, C=N 1610, 1595, 1580, 1545 cm⁻¹. **10**, **11**: NH 3200 cm⁻¹; C=N 2220 cm⁻¹; C=C 1690 cm⁻¹ (endocyclisch); C=C 1640 cm⁻¹ (exocyclisch); Aromat 1595, 1575, 1495 cm⁻¹; Thioamid 1530 cm⁻¹.
- **12**: NH 3180 cm⁻¹ (breit); $C \equiv N$ 2220 cm⁻¹; Aromat 1600, 1585, 1490 cm⁻¹; C = C 1570 cm⁻¹, Thioamid 1510 cm⁻¹.

Massenspektren:

9: Molekül: m/e = 343.

Literatur

- ¹ R. A. Mathes und F. D. Stewart, J. Amer. Chem. Soc. 72, 1879 (1950).
- ² N. Gill, N. K. Ralhan, H. S. Sachdev und K. S. Narang, J. Org. Chem. 26, 966 (1961).
- ³ K. K. Sharma, N. K. Ralhan und K. S. Narang, J. Org. Chem. 28, 740 (1963).
- ⁴ G. Zigeuner, Kr. Kollmann, W.-B. Lintschinger und A. Fuchsgruber, Mh. Chem. 107, 183 (1976).
- ⁵ G. Zigeuner, W.-B. Lintschinger, A. Fuchsgruber und Kr. Kollmann, Mh. Chem. **107**, 155 (1976).

Korrespondenz und Sonderdrucke:

Prof. Dr. G. Zigeuner Institut für Pharmazeutische Chemie Universität Graz Universitätsplatz 1 A-8010 Graz Österreich