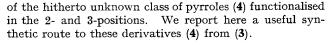
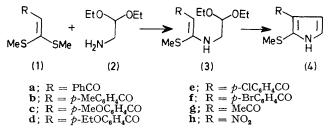
Published on 01 January 1976. Downloaded by University of Prince Edward Island on 26/10/2014 20:53:14.

General Method for the Synthesis of 2-Methylthio-3-substituted Pyrroles using Keten Dithioacetals

By ARVIND KUMAR, HIRIYAKKANAVAR ILA, and HIRIYAKKANAVAR JUNJAPPA*†


(Medicinal Chemistry Division, Central Drug Research Institute, Lucknow, India)


Summary The 2,3-substituted pyrroles (4) have been prepared by a general method by cyclization in cold ethereal HCl of the methylthio-amino-vinyl compounds (3), which were obtained by condensation of the keten dithioacetals (1) with 2,2-diethoxyethylamine (2).

ALTHOUGH there are several synthetic routes to pyrrole and its derivatives,¹ no method is available for the synthesis TABLE

		TUDLE		
Compound	Yield/%	Compound	M.p./°C	$Yield^a / \%$
(3 a)	55	(4a)	129-130	62
(3b)	59	(4b)	152 - 153	56
(3c)	61	(4 c)	156 - 157	54
(3d)	57	(4 d)	105 - 106	50
(3e)	59	(4e)	153 - 154	52 ^b
(3f)	58	(4f)	160 - 161	50 ^b
(3g)	61	(4g)	158	58
(3h)	62	$(4\mathbf{h})$	193 - 194	55

 $^{\mathtt{a}}$ Reaction time 1 h unless otherwise noted. $^{\mathtt{b}}$ Reaction time 2.5 h.

In a general procedure, a solution of compound (3a)[prepared by the reaction of equimolar amounts of $(1a)^2$ and (2) in refluxing EtOH for 25—40 h] in dry ethereal HCl at 10 °C was stirred at room temperature for 1—2.5 h, to give the pyrrole (4a) in 62% yield. The pyrroles (4b—h)⁺ were prepared similarly (Table).

† Present address: Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya, India.

‡ All compounds were characterised by i.r., n.m.r., and mass spectral data and elemental analysis.

§ Compounds (3a-h) were oils or low melting solids, purified by passing through a silica gel column.

The method is particularly useful for the synthesis of 3-acyl or -aroyl pyrroles, since none of the known reactions of pyrroles leads to preferential substitution in the 3-position.³ The method can also be extended to N-substituted pyrroles by using the appropriate compound (2).

One of us (A.K.) thanks C.S.I.R., New Delhi, for a junior research fellowship.

(Received, 26th April 1976; Com. 466.)

¹ E. Baltazzi and L. I. Krimen, Chem. Rev., 1963, 63, 511; M. A. Khan, K. J. Morgan, and D. P. Morrey, Tetrahedron, 1966, 22, 2095.
² S. M. S. Chauhan and H. Junjappa, Tetrahedron, in the press.
⁸ S. Gronowitz, A.-B. Hörnfeldt, B. Gestblom, and R. A. Hoffman, Arkiv. Kemi, 1961, 18, 151; K. J. Morgan and D. P. Morrey,

Tetrahedron, 1966, 22, 57.