REACTIONS RETRODIENIQUES - I SYNTHESE DU DIOXA-3,7 BICYCLO [3.3.0] OCTENE-1(5)

Jean-Louis Ripoll

ERA 391 - Département de Chimie - Université-14032 Caen Cedex - France (Received in France 19 March 1974; received in UK for publication 22 March 1974)

La thermolyse de composés susceptibles de donner lieu à une réaction rétrodiénique (Rétro-Diels et Alder) constitue un moyen d'obtention de molécules insaturées particulièrement intéressant lorsque celles-ci ne peuvent être synthétisées directement (voir 1 à ce sujet). Le domaine d'utilisation de cette réaction a été récemment élargi en opérant sous vide en phase vapeur (2).

Dans le cadre de ce travail, consacré à l'obtention par cette méthode de composés mono-ou polycycliques, nous rapportons la synthèse de dihydro-2,5 furannes symétriquement disubstitués en 3,4 (aucun dialkyl-3,4 dihydro-2,5 furanne non substitué en 2,5 n'est à notre connaissance décrit)

et spécialement celle du dioxa-3,7 bicyclo [3.3.0] octène-1(5) (1). La voie ther-mique utilisée ici permet en particulier d'éviter la migration de la double liaison possible en milieu acide ou alcalin (voir 3 pour les méthodes générales de synthèse des dihydro-2,5 furannes).

La réaction de Diels et Alder de l'anthracène sur l'éthylènetétracarboxylate d'éthyle, effectuée à température ordinaire en présence d'éthanolate de chlorure d'aluminium, conduit à l'éthano-9,10 dihydro-9,10 anthracène tétracarboxylate-11,11,12,12 de tétraéthyle (2); F 135°; ♂ (CDCl3): 1,19 (t, J 7 Hz, 12 H) - 4,02 (quart, J 7 Hz, 8H) - 5,05 (s, 2H) - 7,25 (m sym., 8H). 2, réduit par l'hydrure de lithium aluminium dans le THF, donne l'éthano-9,10 dihydro-9,10 anthracène tétraméthanol-11,11,12,12 (3); $F = 264^{\circ}; f(C_5D_5N) : 3,81 \text{ et 4,05 (2 d sym., J l1 Hz, 8H)-4,79 (s, 2H)-6,2 (4H alcool)}.$ 7,20 et 7,41 (2 m sym., 8H). L'action sur 3 de l'acide sulfurique dilué dans l'acétonitrile permet d'isoler le (dihydro-9,10 anthracénylène-9,10)-1,5 dioxa-3,7 bicyclo[3.3.0] octane (4); F 225°; d (CDCl₃): 3,44 et 3,63 (2 d sym., J 9 Hz, 8H)- 4,05 (s, 2H) -7,18 (m sym., 8H). D'autre part, 3, traité par le dibromure de triphénylphosphine dans l'acétonitrile, donne le bis-bromométhyl-3,4 (dihydro-9,10 anthracénylène-9,10)-3,4 oxa-1 cyclopentane (5); F 303°; & (CDCl₃): 2,80 et 3,44 (2 d sym, J 10 Hz, 4H) - 3,70 (pic unique, 4H) - 4,66 (s, 2H) - 7,30 (m. sym., 8H); la réduction de 5 par le zinc dans l'éthanol aqueux conduit finalement au diméthyl-3,4 (dihydro-9,10 anthracénylène-9,10)-3,4 oxa-1 cyclopentane (6); F 151°; $f(CCl_4)$: 0,78 (s, 6H) - 3,27 et 3,61 (2 d sym., J 9 Hz, 4H) - 3,78 (s, 2H) - 7,12 (m sym., 8H).

La pyrolyse de $\underline{4}$, effectuée à 600° sous 10^{-2} Torr selon la technique décrite (2), donne de façon quantitative l'anthracène et le dioxa-3,7 bicyclo [3.3.0] octène-1(5) ($\underline{1}$); F 114°; \int (CCl₄): 4,51 (s); IR (CCl₄): bandes principales à 2945,2875,2845,1360,1055, 990 et 860 cm⁻¹; spectre de masse (70 ev): m/e = 112 (M⁺), 83,81,55,53 et 39.

De façon analogue, le composé <u>6</u>, pyrolysé à 550° , conduit quantitativement à l'anthracène et au diméthyl-3,4 dihydro-2,5 furanne (<u>7</u>); Eb_{750} 122°; $\mathcal{J}(CCl_4)$: 1,61 (s, 6H) - 4,42 (s, 4H); IR (film): bandes principales à 2960,2905,2825,1435,1250,1045, 910 et 795 cm⁻¹; spectre de masse (70 ev): $m/e = 98 \text{ (M}^+)$, 83,69,55,43 et 41.

$$\frac{4}{(-000)} \xrightarrow{100} \xrightarrow{100} \xrightarrow{100} \frac{6}{(-000)} \xrightarrow{100} \frac{550^{\circ} - 10^{-2} \text{ Torr}}{(-000)} \xrightarrow{100} \xrightarrow{CH_3}$$

Nota: tous les composés rapportés ci-dessus ont donné des analyses élémentaires en accord avec leur formule moléculaire. En ce qui concerne les spectres de RMN, les sont exprimés en ppm avec SiMe, comme référence interne.

Références

- 1/ H. KWART et K. KING; Chem. Rev. 68, 415 (1968)
- 2/ J. HASLOUIN et F. ROUESSAC; C.R.Acad.Sci.(C), 276, 1691 (1973).
- 3/ H. KRÖPER; Methoden der Organischen Chemie, Vol. 6/3; G. THIEME Ed., Stuttgart 1965; p. 592.