that the diradical lifetimes are extremely short, since the diradical components are unquenched by up to 200 Torr of added oxygen. Liquid-phase DMCB photolyses support such a short lifetime.

A more quantitative and extensive investigation of this interesting diradical system is underway in order to study the energetics, rates, and mechanism.

Acknowledgment. Helpful discussions on the orbital symmetry conservation with Professors Marjorie C. Caserio and H. W. Moore are appreciated.

* Address correspondence to this author.

Howard A. J. Carless, Edward K. C. Lee* Department of Chemistry, University of California Irvine, California 92664 Received August 8, 1970

Synthesis and Characterization of Bicyclo[3.3.3]undecane and 1-Azabicyclo[3.3.3]undecane

Sir:

We wish to report the synthesis of two prototype compounds consisting of three eight-membered rings, namely, bicyclo[3.3.3]undecane (1) and 1-azabicyclo-[3.3.3]undecane (2). Compounds possessing this bridged ring system are of particular interest with regard to their possible conformations and their chemical reactivity in comparison with other multicyclic systems including adamantane.

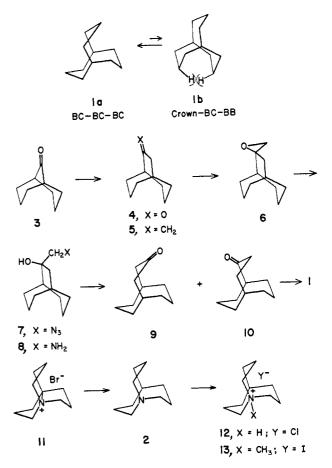
Interest also stems from the conformational relationship to eight-membered rings¹ in the carbocyclic series,² when one or more ring atoms are replaced by heteroatoms,³ and when the eight-membered ring has been constrained by a charge interaction,⁴ or by a hydrocarbon bridge of one⁵ or two⁶ atoms. For unconstrained eight-membered rings, nmr^{2e} and X-ray crystallographic⁷ evidence has shown the boat-chair (BC), or twist forms thereof, to be the favored conformation. This is also the case for the charge-constrained system 5-methyl-1-thia-5-azacycloocten-1-oxide perchlorate.⁴ For the bicyclo[3.3.1]nonane⁸ and bicyclo[3.3.2]decane^{6,9} systems, accumulated evidence suggests the boat-boat (BB) conformation for the eight-membered ring. Molecular models (Dreiding) of the BB confor-

(1) E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison, "Conformational Analysis," Interscience, New York, N. Y., 1965, Chapter 4.

(2) (a) J. B. Hendrickson, J. Amer. Chem. Soc., 86, 4854 (1964);
89, 7036 (1967); (b) K. B. Wiberg, *ibid.*, 87, 1070 (1965); (c) N. L. Allinger and S.-E. Hu, *ibid.*, 83, 1664 (1961); (d) N. L. Allinger, J. A. Hirsch, M. A. Miller, I. J. Tyminski, and F. A. Van-Catledge, ibid., 90, 1199 (1968); (e) F. A. L. Anet and M. St. Jacques, ibid., 88, 2585, 2586 (1966); (f) A. Peake, J. A. Wyer, and L. F. Thomas, Chem. Commun., 95 (1966); (g) J. E. Anderson, E. S. Glazer, D. L. Griffith, R. Knorr, and J. D. Roberts, J. Amer. Chem. Soc., 91, 1386 (1969);

(h) P. Groth, Acta Chem. Scand., 19, 1497 (1965); 21, 2695 (1967).
(3) (a) N. J. Leonard, T. W. Milligan, and T. L. Brown, J. Amer. Chem. Soc., 82, 4075 (1960); (b) J. D. Dunitz and V. Prelog, Angew. Chem., 72, 896 (1960); (c) S. M. Johnson and I. C. Paul, Tetrahedron Lett., 177 (1969).
(d) (c) K. T. Ga and L. C. Paul, ikid, 4265 (1965); (b) L. C. Paul

(4) (a) K.-T. Go and I. C. Paul, *ibid.*, 4265 (1965); (b) I. C. Paul and K.-T. Go, *J. Chem. Soc. B*, 33 (1969); (c) A. E. Yethon, Ph.D. Thesis, University of Illinois, 1963.


(5) M. A. Eakin, J. Martin, and W. Parker, Chem. Commun., 298 (1968).

(6) M. P. Doyle and W. Parker, ibid., 319 (1969).

(7) (a) M. Dobler, J. D. Dunitz, and A. Mugnoli, *Helv. Chim. Acta*, **49**, 2492 (1966); (b) H. B. Bürgi and J. D. Dunitz, *ibid.*, **51**, 1514 (1968).

(8) (a) M. Dobler and J. D. Dunitz, ibid., 47, 695 (1964); (b) W. A.

C. Brown, J. Martin, and G. A. Sim, J. Chem. Soc., 1844 (1965) (9) M. P. Doyle and W. Parker, Chem. Commun., 755 (1970). mation of the eight-membered ring indicate that the transannular H-H distance diminishes in going from the bicyclo[3.3.1]nonane to the bicyclo[3.3.2]decane system, and finally in the bicyclo[3.3.3]undecane system the transannular hydrogens are in contact when one of the eight-membered rings is in the boat-boat conformation (1b). On this basis we predict that in the bicyclo[3.3.3]undecane system the all-boat-chair conformation (1a) should be favored over the crown-BC-BB conformation (1b). Calculations based on the strain energy of the boat-chair, crown, and boat-boat conformations of cyclooctanes^{2a} suggest that the all-BC form (1a) should be at least 6 kcal more stable than alternative conformations.¹⁰

The synthesis of bicyclo[3.3.3]undecane (1) was accomplished by lengthening the short bridge of a bicyclo-[3.3.1]nonane compound. Ring expansion of bicyclo-[3.3.1]nonan-9-one (3)¹¹ with methanolic diazomethane¹² afforded bicyclo[3.3.2]decan-9-one (4):¹³ mp 177-179°; sublimed 60° (10 mm); 75% yield; ir (CHCl₃) 1690 cm⁻¹; nmr (CDCl₃) δ 2.85 (m, 1, CHCO), 2.50 (d, 2, J = 6 Hz, CH₂CO). This compound failed to react further with diazomethane under the same conditions, and numerous routes to the amino alcohol 8

(10) Calculations by D. R. Crist, now at Georgetown University,

(16) Calculators by D. R. Chst, how at Georgetown University,
Washington, D. C., who helped initiate this project.
(11) (a) D. M. Bailey, J. E. Bowers, and C. D. Gutsche, J. Org.
Chem., 28, 610 (1963); (b) A. C. Cope and D. M. Gale, J. Amer. Chem.
Soc., 85, 3743 (1963); C. S. Foote and R. B. Woodward, Tetrahedron, 20, 687 (1964); (d) B. Fell, W. Seide, and F. Asinger, Tetrahedron Lett., 1003 (1968),

(12) P. von R. Schleyer, E. Funke, and S. H. Liggero, J. Amer. Chem. Soc., 91, 3965 (1969).

(13) All new compounds were characterized by microanalyses, nmr spectra, and mass spectra. Yields have not yet been optimized at every step.

were unsuccessful in our hands. The conversion was achieved via a modified Wittig reaction using the methylsulfinyl carbanion and methyl triphenylphosphonium bromide¹⁴ to give 9-methylenebicyclo[3.3.2]decane (5): bp 67-69° (2.5 mm); ir (film) 3040, 1610 cm⁻¹; nmr $(CDCl_3) \delta 4.70 (q, 1, J_{AB} = 2.7 \text{ Hz}, J_{AX} = 2 \text{ Hz}), 4.57$ (q, 1, J_{BA} 2.7 Hz, quartets collasping to doublets, J =2.7 Hz, on irradiation with the frequency of the signal for the two H_x protons). Epoxidation of 5 with m-chloroperbenzoic acid in chloroform (30 min) or monoperphthalic acid in ether (24 hr) at 0° afforded the epoxide 6: mp 97–98°; sublimed 60° (5 min); nmr $(CDCl_3)$ δ 2.62 (s, 2, OCH₂), 2.0 (m, 3, α -CH, α -CH₂), 1.65 (m, 13), which was cleaved by sodium azide in dimethylformamide containing a catalylic amount of boric acid¹⁵ to the hydroxy azide 7: ir (film) 3590, 3540, 2100 cm⁻¹. Reduction of 7 in ethanol with hydrogen and Adams' catalyst¹⁶ gave 9-aminomethylbicyclo-[3.3.2]decan-9-ol (8), characterized as its hydrochloride salt: mp 241–242°; nmr (D₂O–DSS) δ_A 3.04, δ_B 3.22, $J_{AB} = 13$ Hz (CH₂NH₃⁺). Demjanov-Tiffeneau expansion in aqueous acetic acid 17 yielded a mixture of the bicyclo[3.3.3]undecan-9- and 10-ones (9, 10): ir 1685 cm⁻¹; nmr (CDCl₃) δ 2.9 (m, 0.62, CHCO in 10), 2.60 (m, $2 \times 0.62 + 4 \times 0.38$, CH₂CO). Wolff-Kishner reduction¹⁸ of the ketone mixture (9, 10) afforded bicyclo[3.3.3]undecane (1): mp 155-157°, sublimed 50° (10 mm); nmr (CDCl₃) δ 2.3 (m, 2, CH), 1.55 $(18, CH_2's).$

The implications of structure 1a, with C_{3h} molecular symmetry, are of interest. All of the methylene bridges point in the same direction. The tertiary hydrogens may be susceptible to direct substitution,¹⁹ and the 1-substituted bicyclo[3.3.3]undecanes would be dissymmetric (chiral), with the possibility of resolution depending upon the activation energy required for the flipping of the three methylene bridges.

1-Azabicyclo[3.3.3]undecane (2), with a C_3 axis, is of special interest in that it represents an unsubstituted [3.3.3] ring system capable of existing in enantiomeric forms if the conformational energy barrier is sufficiently large. The favored route to this compound proved to be remarkably simple. 1-Azoniatricyclo[3.3.3.0]undecane bromide (11), prepared by the method of Sorm and Beránek, 20 was treated with sodium in liquid ammonia 21 to give 1-azabicyclo[3.3.3]undecane (2): mp 150-152°, sublimed 35° (20 mm); nmr (CDCl₃) δ 2.85 (m, 6, α -CH₂), 2.57 (m, 1, CH), 1.60 (m, 6, β -CH₂), 1.57 (m, 6, γ -CH₂). The hydrochloride salt 12, mp 305-307° dec, from ethanol, and the methiodide 13, mp 273-275°, from ethanol, were prepared, and X-ray single-crystal determinations are in progress.

(14) (a) E. J. Corey and M. Chaykovsky, J. Amer. Chem. Soc., 84, 866 (1962); (b) R. Greenwald, M. Chaykovsky, and E. J. Corey, J.

Org. Chem., 28, 1128 (1963).
(15) D. N. Kirk and M. S. Wilson, Chem. Commun., 64 (1970).
(16) R. L. Augustine, "Catalytic Hydrogenation," Marcel Dekker, New York, N. Y., 1965, p 95.
(17) (a) P. A. S. Smith and D. R. Baer, Org. React., 11, 157 (1960);
(18) K. K. K. S. Smith and D. R. Baer, Org. Chem. Commun., 29, 1072

K. Alder, S. Hartung, and G. Hausmann, Chem. Ber., 89, 1972 (1956)

(18) W. Nagata and H. Itazaki, Chem. Ind. (London), 1194 (1964).

 (19) (a) P. Kovacic and P. D. Roskos, J. Amer. Chem. Soc., 91, 6457
 (1969); (b) H. Stetter, M. Krause, and W.-D. Last, Chem. Ber., 102, 3357 (1969); (c) E. R. Talaty, A. E. Cancienne, Jr., and A. E. Dupuy, Jr., J. Chem. Soc. C, 1902 (1968).

(20) F. Šorm and J. Beránek, Collect. Czech. Chem. Commun., 19, 298 (1954).

(21) E. Grovenstein, Jr., and R. W. Stevenson, J. Amer. Chem. Soc., 81, 4850 (1959).

Further studies of the physical and chemical properties of the bicyclo[3.3.3]undecane compounds are continuing.

Acknowledgment. The authors are indebted to the National Science Foundation for financial support (Research Grant No. GP-8407X).

* Address correspondence to this author.

Nelson J. Leonard,* John C. Coll Department of Chemistry, School of Chemical Sciences University of Illinois, Urbana, Illinois 61801 Received August 22, 1970

Detection of a Secondary Isotope Effect on Partitioning of Benzhydryl Benzoate Ion Pairs

Sir:

Shiner's proposal that ion-pair intervention can influence secondary deuterium isotope effects in solvolytic processes¹ suggests that there should be isotope effects on partitioning of ion-pair intermediates. For example, in the solvolysis of exo-norbornyl brosylate,² which involves partitioning of intimate ion pair II (eq 1) between internal return and irreversible dissociation to III $(k_3 \gg k_{-2})$, the solvolytic rate constant

$$\mathbf{RX} \stackrel{k_1}{\underset{k_{-1}}{\longrightarrow}} \mathbf{R}^+ \mathbf{X}^- \stackrel{k_2}{\underset{k_{-2}}{\longrightarrow}} \mathbf{R}^+ \| \mathbf{X}^- \stackrel{k_3}{\underset{HOS}{\longrightarrow}} \mathbf{ROS}$$
(1)
I II III IV

 $k_{\rm t}$ is the product of the ionization rate k_1 and the fraction of ion pairs that dissociate, $F^{II} = k_2/(k_1 + k_2)$. The solvolytic isotope effect is given by eq 2 and $F_{\rm H}{}^{\rm II}/F_{\rm D}{}^{\rm II}$ by eq 3 (assuming $k_3 \gg k_{-2}$).³ Any difference in total zero-point energy (ZPE) between the α -C-H bond in TS1 (Figure 1) and TS2 would make

$$(k_{\rm t}^{\rm H}/k_{\rm t}^{\rm D}) = (k_{\rm l}^{\rm H}/k_{\rm i}^{\rm D})(F_{\rm H}^{\rm II}/F_{\rm D}^{\rm II})$$
 (2)

$$F_{\rm H}^{\rm II}/F_{\rm D}^{\rm II} = \frac{(k_2^{\rm H}/k_{-1}^{\rm H}) + (k_{-1}^{\rm D}/k_2^{\rm D})/(k_{-1}^{\rm H}/k_2^{\rm H})}{(k_2^{\rm H}/k_{-1}^{\rm H}) + 1}$$
(3)

 $(k_{-1}^{D}/k_{2}^{D})/(k_{-1}^{H}/k_{2}^{H}) \neq 1$ resulting in a partitioning isotope effect (PIE). If covalent bonding to the leaving group is greater in TS1 than TS2, $(\tilde{k}_{-1}{}^{\rm D}/k_2{}^{\rm D})/(k_{-1}{}^{\rm H}/k_2{}^{\rm H}) > 1$ and $F_{\rm H}{}^{\rm II}/F_{\rm D}{}^{\rm II} > 1$. Since $k_2{}^{\rm H}/k_{-1}{}^{\rm H}$ is solvent dependent PIE's could cause solvent effects on solvolytic isotope effects, even though $(k_1^{\rm H}/k_1^{\rm D})$ and $(k_{-1}^{\mathrm{D}}/k_2^{\mathrm{D}})/(k_{-1}^{\mathrm{H}}/k_2^{\mathrm{H}})$ are solvent independent.

To probe the existence of partitioning isotope effects we have measured the α -tritium isotope effect on partitioning of benzhydryl benzoate ion pair(s) generated from diphenyldiazomethane (DDM) and benzoic acid (HOBz-TOBz) in ethanol-O-t and in 90% acetone.⁴ This reaction (Chart I) entails rate-determining proton transfer from monomolecular, undissociated HOBz giving diazonium benzoate ion pair that loses nitrogen to form what appears to be the same benzhydryl benzoate "ion pair or spectrum of ion pairs" as in solvolysis.^{4,5} Except for the tracer (tritium, introduced as TOBz), the experimental conditions of Diaz and

- (3) B. L. Murr, A. Nickon, T. D. Swartz, and N. Werstiuk, ibid., 89, 1730 (1967).
- (4) A. F. Diaz and S. Winstein, ibid., 88, 1318 (1966).
- (5) H. L. Goering and J. F. Levy, ibid., 84, 3853 (1962).

V. J. Shiner, Jr., W. E. Buddenbaum, B. L. Murr, and G. Lamaty, J. Amer. Chem. Soc., 90, 418 (1968).
 S. Winstein and D. S. Trifan, *ibid.*, 74, 1154 (1952).