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Abstract�A mathematical model of selective oxidation of methylcyclohexane with ozone�oxygen mixtures
was substantiated.

The methylcyclohexane molecule has three non-
equivalent C�H bonds (at primary, tertiary, and five
secondary carbon atoms at the �-, �-, and �-positions
relative to the methyl substituent). Therefore, selective
oxidation of this molecule at a definite C�H bond can
hardly be expected, the more so as thermal oxidation
of methylcyclohexane with oxygen occurs at a notice-
able rate only at elevated temperatures (above 120�C)
and is low-selective [1].

The procedures for oxidation and analysis of reac-
tion products were described in [2]. Ozonolysis of
methylcyclohexane is active at 20�C (Fig. 1) and
yields hydroperoxides, alcohols, ketones, acids, and
esters.

Among methylcyclohexyl hydroperoxides formed
by oxidation of methylcyclohexane, the major isomer
(95�96%) is 1-methylcyclohexyl hydroperoxide.
Among methylcyclohexanols, all possible isomers are
detected (Table 1), with 1-methylcyclohexanol pre-
vailing. The yield of the tertiary alcohol decreases
with increasing conversion, temperature, and ozone
concentration (Table 1, Fig. 1). Among isomeric
methylcyclohexanones, 2-methylcyclohexanone pre-
vails (Table 1). As the methylcyclohexane conversion
increases, the yield of the alcohols and ketones de-
creases, with a simultaneous slight increase in the
relative yield of hydroperoxides, acids, and esters
(Fig. 2). The tertiary hydroperoxide at low tempera-
tures (20�C) is consumed in the reaction with ozone
slowly (rate constant 19 � 10�3 l mol�1 s�1); therefore,
its yield increases with conversion of methylcyclo-
hexane. Ozonolysis of methylcyclohexane is highly
selective with respect to the yield of 1-methylcyclo-
hexanol at conversions of up to 12%. An increase in
the yield of acids in the developed ozonolysis of
methylcyclohexane is due to further oxidation of

secondary and tertiary methylcyclohexanols and iso-
meric methylcyclohexanones.

Among carboxylic acids, ozonolysis of methylcy-
clohexane yields monocarboxylic, dicarboxylic, and
keto acids. The ratio of the yield of monocarboxylic
acids to the total yield of keto and dicarboxylic acids
in the examined temperature range (20�80�C, [O3] =
4 vol %) is 0.6�0.7 at the methylcyclohexane conver-
sion of 12�82%. This ratio varies within a narrow
range (0.4�0.7) [1] as the ozone concentration is
varied within 2�4 vol %. The composition of the
acids is given in Tables 2 and 3. Among monocarbox-
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Fig. 1. Kinetic curves of accumulation of (a) hydroperox-
ides ROOH, (b) hydrogen peroxide H2O2, (c) ketones R=O,
(d) alcohols ROH, (e) acids RCO2H, and (f) esters RCO2R�
in oxidation of methylcyclohexane ([O3] = 4 vol %).
(�) Time; the same for Fig. 3. T, �C: (1) 20, (2) 40, and
(3) 80; the same for Figs. 2 and 3.
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Table 1. Composition of neutral products of methylcyclohexane ozonolysis ([O3] = 4 vol %)*
������������������������������������������������������������������������������������

™, �C
�

�**
�

�,** h
� Alcohols, mol % � Ketone, mol %

� � �����������������������������������������������������������
� � � 1-MCHL � 2-MCHL � 3- + 4-MCHL � 2-MCHN � 3- + 4-MCHN

������������������������������������������������������������������������������������
20 � 12 � 2 � 93 � 5.5 � 1.5 � 95 � 5

� 35 � 4 � 93 � 5.0 � 2.0 � 93 � 7
� 57 � 6 � 90 � 8.0 � 2.0 � 90 � 10

40 � 20 � 2 � 85 � 12 � 3 � 90 � 10
� 55 � 4 � 81 � 15 � 4 � 86 � 14
� 77 � 6 � 75 � 16 � 9 � 80 � 20

80 � 35 � 2 � 80 � 15 � 5 � 85 � 15
� 82 � 4 � 75 � 17 � 8 � 80 � 20

40*** � 26 � 6 � 95 � 4 � Traces � 96 � 4
������������������������������������������������������������������������������������

* 1-, 2-, 3-, and 4-MCHL denote the respective isomers of methylcyclohexanol, and 2-, 3-, and 4-MCHN, the respective isomers of
methylcyclohexanone.

** (�) Degree of conversion and (�) ozonolysis time.
*** [O3] = 2 vol %.

ylic acids, acetic acid prevails (70�87%). We also
identified propionic, butyric, valeric, and capric acids.
Among dicarboxylic and keto acids, we identified
�-ketoenanthic (16.2�35.1%), �- and �-methyladipic
(40.7�53.2% in total), oxalic, succinic, methylsuccinic,
�- and �-methylglutaric, and glutaric acids (Table 3).
As the ozone concentration and temperature are in-
creased, the yield of acetic and �-ketoenanthic acids
decreases. Keto acids are formed by ozonolysis of the
tertiary hydroperoxide, 1- and 2-methylcyclohexanols,
and 2-methylcyclohexanone [3�6].

Low-temperature ozonolysis of methylcyclohexane
is a radical-chain reaction. Calculations show that, as
in oxidation of cyclohexane, the chain-propagating
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Fig. 2. Yield 	i of (a) hydroperoxides ROOH, (b) alcohols
ROH, (c) ketones R=O, (d) acids RCO2H, and (e) esters
RCO2R� as a fuinction of methylcyclohexanol conversion
at [O3] = 2 vol %. (
ci) Sum of ozonolysis products.

species are alkoxy radicals rather than less active RO
.
2

radicals. Alkoxy radicals are apparently generated by
recombination of tertiary peroxy radicals and by reac-
tion of RO

.
2 radicals with ozone. The tertiary hydro-

peroxide is formed by cross recombination of RO
.
2

and HO
.
2 radicals and is mainly consumed with forma-

tion of 1-methylcyclohexanol.

At low (4�7%) methylcyclohexane conversions,
ozonolysis occurs to 92�93% at the tertiary C�H
bond. For example, at 20�C ([O3] = 0.5�2.5 vol %),
the total yield of 1-methylcyclohexanol and 1-methyl-
cyclohexyl hydroperoxide is 92�93%, that of other
methylcyclohexanols and of methylcyclohexanones,
6�6.5%, and that of acids, 0.5�2%. The whole set of
the data obtained allow us to propose the following
mechanism of methylcyclohexane ozonolysis at low
conversions:
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Table 2. Content of monocarboxylic acids formed by ozonolysis of methylcyclohexane ([O3] = 4 vol %)
������������������������������������������������������������������������������������

T, �C
�

�, %
�

�, h
� Acid, mol %

� � ���������������������������������������������������
� � � C2 � C3 � C4 � C5 � C6

������������������������������������������������������������������������������������
20 � 12 � 2 � 69.8 � 13.4 � 5.0 � 5.0 � 6.8

� 35 � 4 � 71.0 � 12.5 � 4.7 � 5.0 � 6.5
� 57 � 6 � 74.0 � 10.0 � 5.0 � 5.3 � 6.1

40 � 20 � 2 � 74.1 � 10.0 � 5.2 � 8.0 � 2.3
� 55 � 4 � 75.0 � 10.0 � 5.1 � 7.0 � 2.9
� 77 � 6 � 76.0 � 9.5 � 4.8 � 6.0 � 3.6

80 � 35 � 2 � 76.0 � 9.5 � 2.9 � 7.0 � 4.5
� 82 � 4 � 80.0 � 8.3 � 3.5 � 5.0 � 3.0

40 � 26 � 6 � 87.0 � 1.0 � Traces � Traces � 12.0
������������������������������������������������������������������������������������

Table 3. Content of keto and dicarboxylic acids formed by ozonolysis of methylcyclohexane ([O3] = 4 vol %)
������������������������������������������������������������������������������������

T, �C

�

�, %

�

�, h

� Acid, mol %
� � ���������������������������������������������������������������
� � �

oxalic
� methylsuccinic + � glutaric and �

�-ketoenanthic
�

(�+�)-methyladipic� � � � succinic � methylglutaric � �
������������������������������������������������������������������������������������

20 � 12 � 2 � 15.0 � 7.5 � 11.6 � 20.6 � 45.4
� 35 � 4 � 13.0 � 7.0 � 12.0 � 18.8 � 49.2
� 57 � 6 � 12.5 � 6.9 � 12.4 � 16.2 � 52.0

40 � 20 � 2 � 10.5 � 5.1 � 8.0 � 28.1 � 48.3
� 55 � 4 � 8.5 � 4.3 � 10.3 � 27.5 � 49.4
� 77 � 6 � 6.1 � 3.1 � 12.5 � 26.6 � 51.7

80 � 35 � 2 � 4.0 � 2.7 � 10.8 � 32.3 � 50.1
� 82 � 4 � 2.7 � 2.1 � 11.5 � 30.5 � 53.2

40 � 26 � 6 � 10.0 � 5.9 � 8.3 � 35.1 � 40.7
������������������������������������������������������������������������������������

where k** are the estimated values of the constants,
refined during further optimization.

The steady-state concentrations of the ith radical
are determined from the condition d[Xi]/d
 = 0.
Taking into account the yields of products formed by
the attack of ozone and radicals at the tertiary and
secondary C�H bonds of the methylcyclohexane mol-
ecule, we can write
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The rates of elementary reactions (1)�(14) of meth-

ylcyclohexane ozonolysis are expressed as follows:
R1 = k1[RH][O3], R2 = k2[ROOOH], R3 = k3 �
[ROOOH][O3], R4 = k4[O3][HO3

�], R5 = k5[HO2
�] �

[HO3
�], R6 = k6[O2

�][R�], R7 = k7[RO2
�]2, R8 = k8 �

[RO2
�][HO2

�], R9 = k9[RO2
�][O3], R10 = k10[ROOH] �

[RO�], R11 = k11[O3][ROOH], R12 = k12[RH][RO�],
R13 = k13[HO�]2, and R14 = k13[RO2

�]2.

The initial reactant concentrations are [RH] = 7.8,
[O3] = 1.3 � 10�3, and [O2] = 5.6 � 10�3 mol l�1 s�1.
The concentrations of the radicals are found from the
following relationships:

[RO2
� ] = [(2R2 + R4 + R11 + �R1)/(2k�7)]1/2,

�R1 + R12
[R�] = ��������,

[O2]k6

[�OH] = [(�R1 + R4 + R11)/(2k13)]1/2,

[HO3
� ] = R3/([O3]k4 + k5[HO2

� ]),

[RO� ] = (R2 + R3 + 2R7 + R9)/(k10[ROOH] + k12[RH]),

[HO2
� ] = (R2 � R3 + R4)/([RO�]k8).

The constants k5�k7, k10, k12, k13, and k�13 were
taken from [7�12], and the constants k1, k9, and k11
were measured by us in special experiments.
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The rates of consumption of methylcyclohexane
(RH) and accumulation of 1-methylcyclohexanol
(ROHt), 1-methylcyclohexyl hydroperoxide (ROOH),
hydrogen peroxide, sum of secondary methylcyclo-
hexanols (ROHs), methylcyclohexanones (R=O),
and hydrotrioxide (ROOOH) are described by the
differential equations

d[RH]/d� = �R1 � R12, d[ROH]t/d� = R10 + R12 + �R1,

d[ROOH]/d� = R8 � R10 + �R11,

d[H2O2]/d� = R5 + R13, d[ROH]s/d� = �R1 + k�13[R�O2
� ]2,

d[R=O]/d� = k�13[R�O2
� ]2, d[ROOOH]/d� = �R1 � R2 � R3.

Integration of this sytem of differential equations
allows refinement of the constants k1�k13** and coeffi-
cients �, �, �, and �. The values of these parameters
are given in the scheme of the mechanism of methyl-
cyclohexane ozonolysis. The calculated data reasona-
bly agree with the experiment (Figs. 1�3). The steady-
state concentrations of the radicals are as follows:
[RO�

2] = (1.32�1.36) � 10�5, [RO�] = (3.62�3.68) �
10�10, [�OH] = (3.13�3.21) � 10�8, [HO�

2] = (5.48�
5.72) � 10�7, and [HO�] = (1.04�1.07) � 10�7 M (
 =
10�60 min).

According to the suggested mechanism, methyl-
cyclohexane is consumed by the nonchain and chain
pathways. Linear consumption (Fig. 3) is observed
only at small conversions. In the developed process,
the kinetic curves of methylcyclohexane (RH) con-
sumption are nonlinear and are described by the fol-
lowing equation in the entire range of reactant con-
centrations up to deep conversions:
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Computer processing of the experimental data gave
the following expressions: k1app = 1.25 � 102 �
e�(25500� 3500)RT l mol�1 s�1 and k = 3.5 � 10�1 �
e�(25500� 3500)RT l mol�1 s�1.

The bimolecular rate constant of the reaction of
1-methylcyclohexyl hydroperoxide with ozone is low.
However, in the developed reaction of methylcyclo-
hexane ozonolysis, it is possible that the associate of
1-methylcyclohexyl hydroperoxide and 1-methylcy-
clohexanol (their association was detected by 1H

�, h

[RH], M

Fig. 3. Kinetic curves of consumption of methylcyclohex-
ane RH ([O3] = 1.3 � 10�3 M): (I) experiment and (II) cal-
culation.

�, h

A � 10�4, counts s�1 mol�1 � � 104, mol l�1 min�1

Fig. 4. Variation of the (1) specific activity A and of the
rates � of (2) formation and (3) consumption of 1-methyl-
cyclohexyl hydroperoxide in the course of methylcyclohex-
ane ozonolysis (20�C, [O3] = 4 vol %).

NMR [13]) reacts with ozone at the same rate as does
nonassociated 1-methylcyclohexyl hydroperoxide. To
reveal the role of this reaction in the overall ozonol-
ysis of methylcyclohexane, we added at the stage of
the developed reaction (20�C, [O3] = 4 vol %, 30 min
after the start of the experiment) 14C-labeled 1-meth-
ylcyclohexyl hydroperoxide. The specific activity of
the added hydroperoxide decreases (Fig. 4) owing to
both its consumption and dilution with the forming
nonradioactive 1-methylcyclohexyl hydroperoxide.
The labeled compound transforms into the following
14C-labeled products: 1-methylcyclohexanol, �-keto-
enanthic acid, and acetic acid. From variation of the
specific activity of the hydroperoxide in the course of
the experiment, we calculated the rates of its forma-
tion. Taking into account the experimental rates of
1-methylcyclohexyl hydroperoxide accumulation, we
calculated the rates of its consumption (Fig. 4).

Among the products of 1-methylcyclohexyl hydro-
peroxide transformations, 1-methylcyclohexanol com-
prises only 6�7%. An increase in the rate of formation
of the tertiary hydroperoxide with the conversion of
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the hydrocarbon is apparently due to increase in the
rate of HO.

2 generation. Unstable methylcyclohexyl
hydrotrioxide may be a source of HO.

2. A decrease in
the yield of hydrogen peroxide (Fig. 1), seemingly
contradicting this assumption, may be due to catalysis
of its decomposition with acids.

CONCLUSION

In contrast to nonselective high-temperature non-
catalytic oxidation of saturated hydrocarbons contain-
ing primary, secondary, and tertiary C�H bonds, their
low-temperature ozonolysis at small conversions, as
demonstrated by the example of methylcyclohexane,
occurs selectively at the tertiary C�H bond and yields
the corresponding alcohols. The tertiary alcohols are
formed by recombination of the R. and OH. radicals
generated by primary initiation, by radical-chain trans-
formations of tertiary hydroperoxides, and by attack
of the starting substrate by RO. radicals.
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