$[{Cp^{*}(Cl)Re}_{2}(\mu-CO)_{2}](Re \equiv Re),$ ein zweikerniger Rhenium(II)-Komplex mit *cis*-konfigurierten, terminalen Cl-Atomen

 $[{Cp*(Cl)Re}_2(\mu-CO)_2](Re \equiv Re), a$ Dinuclear Rhenium(II) Complex with *cis* Configuration of the Terminal Cl Atoms

Otto J. Scherer*, Markus Ehses, Gotthelf Wolmershäuser**

Fachbereich Chemie der Universität Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern

Herrn Prof. Dr. Wolfgang Beck zum 65. Geburtstag gewidmet

Z. Naturforsch. **52b**, 762–765 (1997); eingegangen am 26. Februar 1997

Dinuclear Rhenium Complexes, *cis*-Chloro, μ -Carbene, μ -Vinylidene Ligands, Crystal Structure

The reaction of $[{Cp^*(OC)_2Re}_2](Re = Re)$ (1), $Cp^* = C_5Me_5$, with CH_2Cl_2 yields the dinuclear rhenium complexes $[{Cp^*(Cl)Re}_2(\mu$ -CO)_2](Re = Re) (2) with cis orientation of the Cl atoms, $[{Cp^*(OC)_2Re}_2(\mu$ -CH₂)](Re-Re) (3), a complex with a bridging CH₂-carbene ligand, and $[{Cp^*(OC)_2Re}_2(\mu$ -C=CH₂)](Re-Re) (4), a μ -vinylidene(alkenylidene) compound. The structure of 2 has been confirmed by a single crystal X-ray structure determination. Starting with $[Cp^*Re-(CO)_2(thf)]$ (6) instead of 1 the reaction with CH_2Cl_2 affords cis- $[Cp^*Re(CO)_2(Cl)(CH_2Cl)]$ (7) by oxidative addition of dichloromethane.

Einleitung

In der Chemie der der metallorganischen Verbindungen des Rheniums [1] sind zweikernige Re(II)-Komplexe mit Cp^{R} - und CO-Liganden nicht allzu häufig. So kennt man z. B. neben *trans*-[{Cp*(OC)₂Re}₂(μ -Br)]⁺(Re-Re) [2] den "reinen" Carbonylkomplex [Re₂{ μ -C(OMe)Ph}₂(CO)₈]-(Re-Re) mit verbrückenden Carbenliganden [3] sowie den μ -Vinylidenkomplex [{Cp*(OC)₂Re}₂(μ -C=CH'Bu)](Re-Re) [5].

Ergebnisse

Ausgehend von $[{Cp^*(OC)_2Re}_2](Re=Re)$ (1) [4] erhält man bei dessen Umsetzung mit Dichlormethan in n-Hexan neben $[Cp^*Re(CO)_3]$ (5) und $[{Cp^*(Cl)Re}_2(\mu-CO)_2](Re \equiv Re)$ (2) (Ausbeute jeweils *ca.* 15%) geringe Mengen des μ -CH₂-Carbenkomplexes $[{Cp^*(OC)_2Re}_2(\mu-CH_2)](Re-Re)$ (3) und $[{Cp^*(OC)_2Re}_2(\mu-C=CH_2)](Re-Re)$ (4) (Schema 1) mit einem verbrückenden μ -C=CH₂-Vinylidenliganden.

Schema 1. Synthese der Rheniumkomplexe 2-5.

Setzt man anstelle von **1** den Einkernkomplex $[Cp*Re(CO)_2(thf)]$ (**6**) [4] mit Dichlormethan um, dann entsteht in guter Ausbeute neben Spuren des Carbenkomplexes **3** (Schema 1) *cis*- $[Cp*(OC)_2$. Re(Cl)(CH₂Cl)] (**7**), eine Verbindung, bei der CH₂Cl₂ nicht locker an das 16 VE-Fragment {Cp*Re(CO)₂} gebunden ist [6], sondern unter Spaltung einer C-Cl-Bindung oxidativ addiert wurde [7].

$$\begin{bmatrix} Cp^*Re(CO)_2(thf) \end{bmatrix} \xrightarrow[RT]{CH_2Cl_2} \\ \overrightarrow{RT} + ca. 40 \text{ min.} \end{bmatrix}$$

$$\frac{[Cp*Re(CO)_2(Cl)(CH_2Cl)] + 3 (Spuren)}{7}$$

2 bildet türkisfarbene, metallisch glänzende, nadelförmige Kristalle, die in CH_2Cl_2 sehr gut, in Toluol mäßig und in Hexan sowie Petrolether unlöslich sind. Sie können an Luft gehandhabt werden.

Die ¹H-, ¹³C- und IR-Daten (ν (CO), ν (C=CH₂)) können Tab. I entnommen werden.

Erwähnenswert sind die geringen Unterschiede für δ ¹H (Cp*) (1,90–1,99) bei allen vier Komplexen; in den ¹³C-NMR-Spektren findet man für μ -CO von **2** und μ -C=CH₂ (isoelektronische Liganden) von **4** nahezu identische Werte (240,9/241,0).

Kristallstrukturanalyse von $[{Cp^*(Cl)Re}_2 - (\mu - CO)_2]$ ($Re \equiv Re$) (**2**)

In Tab. II sind wichtige Bindungslängen (Å) und -winkel (°) zusammengestellt.

D

0932-0776/97/0600-0762 \$06.00 © 1997 Verlag der Zeitschrift für Naturforschung. All rights reserved.

^{*} Sonderdruckanforderungen an Prof. Dr. O. J. Scherer.

^{**} Kristallstrukturanalyse.

	$\frac{[Cp*_{2}Cl_{2}Re_{2}(CO)_{2}]}{2}$	[Cp* ₂ Re ₂ (CO) ₄ (CH ₂)] 3	[Cp* ₂ Re ₂ (CO) ₄ (CCH ₂)] 4	[Cp*Re(CO) ₂ (Cl)(CH ₂ Cl)] 7
¹ H ^{a)}				
δ (Cp*, CH ₂) [ppm] ¹³ C ^{b)}	1,90(s,30H)	1,96(s,30H), 6,07(s,2H)	1,96(s,30H), 5,84(s,2H)	1,99(s,15H), 3,55(d,1H), 4,57(d,1H); ² <i>J</i> (HH) = 9,1 Hz
δ [ppm]	240.9(s,µ-CO) 105,1(s,br., C ₅ Me ₅) 10,1(q,C ₅ (CH ₃) ₅ ; ¹ J(CH) = 129,1Hz)	209,2l206,2(s,CO) 98,4(s,br., C_5Me_5) 89,6(t, μ -CH ₂); ¹ J(CH) = 140,4 Hz) 10,2(q,C ₅ (CH ₃) ₅ ; ¹ J(CH) = 128,2 Hz)	241,0(s, μ -C=CH ₂) 207,6(206,3(s,CO) 122,3(t, μ -C=CH ₂ ; ¹ J(CH) = 156,3 Hz) 99,5(s,br., C ₅ Me ₅) 10,3(q,C ₅ (CH ₃) ₅ ; ¹ U(CH) = 128 0 Hz)	208,6 208,5(s,s,br., C O) 104,5(s,br., C ₅ Me ₅) 24,7(dd, C H ₂ ; ¹ <i>J</i> (C H) = 160,5 154,8 Hz) 9,4(q, C ₅ (C H ₃) ₅ ; ¹ <i>J</i> (C H) = 129,1 Hz)
ν (CO) ^{c)} [cm ⁻¹]	1720(sh),1712(s)	1960(m),1922(vs) 1886(s),1862(m)	1964(m),1930(vs) 1896(s),1872(m) 1555(w, v (C=CH ₂))	2022(vs),1940(br., s)

Tab. I. ¹H-, ¹³C- und IR-Daten der Rheniumkomplexe 2, 3, 4 und 7.

^{a)} 200,13 MHz (CHCl₃ = 7,25 ppm als int. Standard), in CDCl₃; ^{b)} 50,32 MHz, **2**, **3**, **4** in CDCl₃ (int. Standard = 77,0 ppm) und **7** in C₆D₆ (int. Standard = 128,0 ppm); ^{c)} **2** und **7** in CH₂Cl₂, **3** und **4** in *n*-Hexan.

Tab. II. Ausgewählte Bindungslängen (Å) und -winkel (°) von [{ $Cp*(Cl)Re}_2(\mu-CO)_2$] ($Re \equiv Re$) (2)^a).

Re1-Re1'	2,531(2)	C11-O1 1,35(4)
Re1-Cl1 ^{a)}	2,327(7)	Re1-Cp* _(Zentr.) 1,94
Re1-C11	1,97(5)	1 (
Re1-C11'	1,98(4)	
Re1-C11-Re1'	80(2)	Re1'-C11-O1 137(4)
Re1'-Re1-Cl1	98,7(2)	Cp* _(Zentr.) -Re1-Re1' 150
Re1-C11-O1	143(3)	

^{a)} Re1-Cl1 = Re1'-Cl1' usw. **2** weist C_2 -Symmetrie auf.

Abb. 1. Kristallstruktur von $[{Cp^*(Cl)Re}_2(\mu$ -CO)₂] (Re = Re) (2).

Wendet man auf **2** die 18e⁻-Regel an, dann sollten 2,531(2) Å formal einer Re \equiv Re-Bindung entsprechen. 2,538(4) Å wurden für [(PhEt₂P)₄Re₂H₈]

 $(Re \equiv Re)$ [8] gefunden; der Re-Re-Abstand von 2,506(1) Å im trans-[{Cp*'(Cl)Re}₂(μ -Cl)₂] (8) [9] wird im Sinne einer Doppelbindung interpretiert, während 2,411(1) Å bei [{Cp*Re}_2(\mu-CO)_3](Re = Re) formal einer Dreifachbindung entspricht [10]. Der Re-Cl-Abstand von 2,327(7) Å in Komplex 2 mit cis-konfigurierten Cl-Atomen beträgt bei 8 [9] mit terminaler trans-Anordnung und höherer Oxidationsstufe 2,406(1) Å. Als Torsionswinkel der nahezu coplanaren Atome Cl1-Re1-Re1'-Cl1' findet man 5°. Eine deutliche Faltung (Abb. 1) weist der Re1-C11-Re1'-C11'-Vierring auf, dessen Ebenen Re1-C11-Re1' | Re1-C11'-Re1' einen Winkel von 152° bilden. Die bei 2 ebenfalls cis-angeordneten Cp*-Liganden weisen mit den Re-Atomen einen Winkel (Re1'-Re1-Cp*_(Zentr.) = Re1-Re1'- $Cp^*(Zentr.)$ von 150° auf.

Rheniumkomplexe 3, 4 und 7

Die gelben, pulverförmigen Verbindungen **3**, **4** und **7**, die sich in CH₂Cl₂ sehr gut und in Hexan mäßig lösen (**7** ist unlöslich), können an Luft gehandhabt werden. Der μ -CH₂-Carbenkomplex **3** findet sein Pendant beim [{Cp^R(OC)₂Mn}₂-(μ -CH₂)](Mn-Mn), Cp^R = C₃H₄Me, das zusätzlich durch eine Kristallstrukturanalyse charakterisiert wurde [11]. Zweikernige Rhenium- μ -Vinyliden-Komplexe vom Typ **4** sind für [{Cp(OC)₂Re}₂-(μ -C=CH₂)] [12] und [{Cp*(OC)₂Re}₂(μ -C= CH'Bu)](Re-Re) [5] bekannt und im letzteren Falle auch röntgenstrukturanalytisch abgesichert.

Während 7 sich bereits bei Raumtemperatur formal durch oxidative Addition von CH_2Cl_2 an

das 16 VE-Fragment {Cp*(OC)₂Re} bildet, bedarf es dazu z. B. beim ${(Ph_3P)_2Pt}$ - [13] oder {Cp*(OC)Co}-Fragment [14] der photochemischen Aktivierung. In Anlehnung an die Literatur [2,15] schlagen wir für cis-[Cp*(OC)₂Re(Cl)-(CH₂Cl)] (7) eine "vierbeinige" Klavierstuhlkonformation mit cis-Stellung der CO-Liganden vor. Unter der Annahme einer starren Konformation ergeben sich dann die in den Spektren (Tab. I) gefundenen Aufspaltungsmuster. ¹³C-NMR: 2 CO-Resonanzen, ¹H-NMR: 2 Signale für die diastereotopen Protonen der CH₂Cl-Gruppe. 7 geht thermisch (Toluol, > 70 °C) oder photochemisch (CH₂Cl₂, 150 W-Hg-Hochdrucklampe, 20 °C) unter formaler Abspaltung von "CH₂" (vgl. dazu Lit. [7]) in ein Gemisch der bekannten stereoisomeren Komplexe *cis*|*trans*-[Cp*Re(CO)₂(Cl)₂] [15] über.

Experimentelles

Synthese der Rheniumkomplexe 2–5

91 mg (0,12 mmol) **1** [4,16] werden mit *ca.* 2 ml CH₂Cl₂ bei R. T. unter Rühren versetzt. Nach *ca.* 1–2 min beobachtet man eine Farbänderung von dunkelgrün nach gelbgrün. Anschließend gibt man *ca.* 7 ml *n*-Hexan dazu und läßt bei –78 °C über Nacht stehen. Nach Abpipettieren der Lösung verbleibt **2** als türkisfarbener Feststoff, der 3 mal mit *ca.* 2 ml Petrolether gewaschen und im Ölpumpenvakuum getrocknet wird. Ausbeute 13 mg (14%). **2** läßt sich aus CH₂Cl₂ / Hexan (1 : 1) bei –20 °C umkristallisieren.

2: C₂₂H₃₀Cl₂O₂Re₂ (769,76) Ber. C 34,33 H 3,93%, Gef. C 34,29 H 3,91%.

Die vereinigten Lösungen werden im Olpumpenvakuum trocken gezogen und über eine mit Al₂O₃ (4% H₂O) und Petrolether bepackte Säule (20 x 1 cm) chromatographiert. Bis zu einem Gemisch von Petrolether / Toluol = 5 : 1 eluiert man farbloses $[Cp*Re(CO)_3]$ (5) [17] [16 mg (16%)]. Mit einem 5 : 2-Gemisch erhält man eine gelbe Fraktion, bestehend aus einem ca. 1 : 1-Gemisch an 3 und 4 (jeweils ca. 5 mg = ca. 2%). Der Carbenkomplex 3 kann durch fraktionierende Kristallisation analysenrein gewonnen werden. Andert man voranstehende Versuchsbeschreibung derart ab, daß man 1 bei -78 °C in reinem CH₂Cl₂ löst und danach auftauen läßt, dann erhält man den Vinylidenkomplex 4 in einer Ausbeute von 19%, zusammen mit Spuren an 3. Spektroskopisch sind in der Reaktionslösung nur geringe Mengen an 2 nachweisbar.

3:
$$C_{25}H_{32}O_4Re_2$$
 (768,95)
Ber. C 39,05 H 4,19%,
Gef. C 38,99 H 4,19%.
4: $C_{26}H_{32}O_4Re_2$ (780,96)
Ber. C 39,99 H 4,13%,
Gef. C 40,19 H 4,10%.

Synthese des Rheniumkomplexes 7

330 mg (0,73 mmol) **6** [4] werden in 45 ml CH₂Cl₂ gelöst und bei R. T. 45 min gerührt. Danach wird die gelb-braune Lösung auf ein Drittel eingeengt, mit der dreifachen Menge an *n*-Hexan versetzt und über Nacht bei -78 °C stehen gelassen. Nach Abtrennen der Lösung verbleibt **7** als gelbes Pulver, das 3 mal mit 5 ml Hexan gewaschen wird. Ausbeute: 201 mg (59%).

7: C₁₃H₁₇Cl₂O₂Re (462,39) Ber. C 33,77 H 3,71%, Gef. C 33,76 H 3,79%.

Die vereinten Lösungen werden im Ölpumpenvakuum trocken gezogen und über eine mit Al_2O_3 (4% H₂O) und Petrolether bepackte Säule (20 x 1 cm) chromatographiert. Man eluiert mit Petrolether / Toluol = 5 : 2 Spuren am Carbenkomplex **3.**

Kristallstrukturanalyse

Kristalldaten: $C_{22}H_{30}Cl_2O_2Re_2$, M = 769,76 g · mol⁻¹, Kristallgröße *ca.* 0,50 x 0,30 x 0,10 mm, tetragonal, Raumgruppe P42₁c, *a* = *b* = 11,774(2), *c* = 17,037(2) Å, *a* = *β* = *γ* = 90°, V = 2361,7(6) Å³, Z = 4, D_x = 2,165 Mg m⁻³, λ (MoK_{*a*}) = 71,073 pm, μ = 10,483 mm⁻¹, T = 293(2) K.

Datensammlung und -reduktion: STOE-IPDS-Diffraktometer. Zwischen $\Theta_{\min} = 2,10$ und $\Theta_{\max} = 25,89^{\circ}$ wurden 16378 Reflexe gemessen, von denen 2284 unabhängig waren ($R_{int} = 0,1460$).

Strukturlösung und -verfeinerung: Die Struktur wurde mit direkten Methoden gelöst (SIR 92) und anisotrop gegen F² verfeinert (Siemens SHELXTL). Daten / Parameter = 2276 / 133. Endgültige *R*-Werte [I > 2 σ (I)]: *R*1 = 0,0712, *wR*2 = 0,1767. Alle Daten: *R*1 = 0,1114, *wR*2 = 0,2227. Absolutstrukturparameter 0,56(6) (racemischer Zwilling). GooF (alle Daten) 1,078, größtes Maximum und Minimum: 1,562/-1,211 e Å⁻³.

Verfeinerung nach F^2 mit allen Reflexen. 8 Reflexe wurden wegen sehr negativem F^2 oder wegen potentieller systematischer Fehler nicht einbezogen. Die gewichteten *R*-Werte, wR2 und alle Goof's basieren auf F², *R*-Werte *R*1 auf F, wobei F für negative F² gleich Null gesetzt wird.*

* Weitere Einzelheiten wurden beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, hinterlegt und können dort unter Angabe der Hinterlegungsnummer CSD 406882 angefordert werden.

Dank

Dem Fonds der Chemischen Industrie, Frankfurt am Main, sowie dem Graduiertenkolleg "Phosphorchemie als Bindeglied verschiedener chemischer Disziplinen" danken wir für die finanzielle Unterstützung.

- M. Boag, H. D. Kaesz, in Comprehensive Organometallic Chemistry I. E. W. Abel, F. G. A. Stone, G. Wilkinson (eds.): Pergamon Press, Vol. 4, p. 161 (1982); J. M. O' Connor, ibid II, Vol. 6, p. 167 (1995).
- [2] A. C. Filippou, B. Lungwitz, G. Kociok-Köhn, I. Hinz, J. Organomet. Chem. **524**, 133 (1996).
- [3] E. O. Fischer, T. L. Lindner, H. Fischer, G. Huttner, P. Friedrich, F. R. Kreissl, Z. Naturforsch. 32b, 648 (1977).
- [4] C. P. Casey, R. S. Carino, H. Sakaba, R. K. Hayashi, Organometallics, 15, 2640 (1996).
- [5] C. P. Casey, Y. Ha, D. R. Powell, J. Am. Chem. Soc., 116, 3424 (1994).
- [6] CH₂Cl₂-Komplexe: z. B. W. Beck, K. Schloter, Z. Naturforsch. **33b**, 1214 (1978); M. Butts, B. L. Scott, G. J. Kubas, J. Am. Chem. Soc. **118**, 11831 (1996) und dort zit. Lit.
- [7] Übersicht: H. B. Friedrich, J. R. Moss, Adv. Organomet. Chem. 33, 235 (1991).
- [8] R. Bau, W. E. Carroll, R. G. Teller, T. F. Koetzle, J. Am. Chem. Soc. 99, 3872 (1977).

- [9] W. A. Herrmann, R. A. Fischer, J. K. Felixberger, R. A. Paciello, P. Kiprof, E. Herdtweck, Z. Naturforsch. 43b, 1391 (1988).
- [10] J. K. Hoyano, W. A. G. Graham, J. Chem. Soc., Chem. Commun., 1982, 27.
- [11] M. Creswick, I. Bernal, W. A. Herrmann, J. Organomet. Chem., **172**, C 39 (1979).
- [12] M. R. Terry, L. A. Mercando, C. Kelley, G. L. Geoffroy, P. Nombel, N. Lugan, R. Mathieu, R. L. Ostrander, B. E. Owens-Waltermire, A. L. Rheingold, Organometallics 13, 843 (1994).
- [13] O. J. Scherer, H. Jungmann, J. Organomet. Chem. 208, 153 (1981).
- [14] W. L. Olson, D. A. Nagaki, L. F. Dahl, Organometallics 5, 630 (1986).
- [15] F. W. B. Einstein, A. H. Klahn-Oliva, D. Sutton, K. G. Tyers, Organometallics 5, 53 (1986).
- [16] O. J. Scherer, M. Ehses, G. Wolmershäuser, J. Organomet. Chem., im Druck.
- [17] A. T. Patton, C. E. Strouse, C. B. Knobler, J. A. Gladysz, J. Am. Chem. Soc., 105, 5804 (1983).