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ABSTRACT

BF3OEt, .\
—78 ‘c d (-)-odoratisol C
[ ; (—)-futokadsurin A
‘Ar? (-)-veraguensin
1
Art O A , (A", Ar? = Aryl)
[i [f (+)-fragransin A,
BF3 OEtz Arl AR (+)-galbelgin
-20°C
A versatile route to the synthesis of 2,5-diaryl-3,4-dimethyltetrahydrofuran lignans, ( —)-odoratisol C (1), ( —)-futokadsurin A (2), ( —)-veraguensin

(3), (+)-fragransin A , (4), (+)-galbelgin (5), and ( +)-talaumidin (6), is described. Central to the synthesis of the lignans is BF 3OEt,-promoted
deoxygenation/epimerization of the hemiketal 9a followed by stereoselective reduction of the oxocarbenium ion intermediates 8a,b.

Lignans and neolignans are a class of secondary plantAmong lignans and neolignans, 2,5-diaryl-3,4-dimethyltet-
metabolites produced by oxidative dimerization of two rahydrofuran lignans have stimulated substantial synthetic
phenylpropane (C6C3) units, which are formed biogeneti- efforts due to their structural diversity and biological activity.

cally through the shikimate pathwayAlthough their mo- Herein, we report a versatile route to the synthesis-0f (
lecular backbone consists of only two phenylpropane units, odoratisol C ),* (—)-futokadsurin A 2),5 (—)-veraguensin

lignans show an enormous structural diversity. Lignans (3)6 (+)-fragransin A (4),7 (+)-galbelgin ) and @)-
possess significant pharmacological activities, including

antitumor, anti-inflammatory, immunosuppressive, cardio- (2) Saleem, M.; Kim, H. 3 Ali, M. S.; Lee, Y. $at. Prod. Rep2005
vascular, neuroprotective, neurotrophic, antioxidant, and 22, 69e.

antiviral actions’ There is a growing interest in lignans and ((133 (aéHﬁ”eéﬁ'S‘r?alsK.@Fied‘ﬂye’f%%'eét 25%7,74(73- ég)ul%?n$sslfg, §
their synthetic derivatives due to applications in Cancer p- yrs .. Fikayama v Feahodian Lona008 47, 3676, (&) Joho,
chemotherapy and a variety of other pharmacological effects.U.: Rudakov, D.Org. Lett. 2006 8, 4481 and references cited therein.
(4) Giang, P. M.; Son, P. T.; Matsunami, K.; Otsuka,Ghem. Pharm.
Bull. 2006 54, 380,
(1) (@) Whiting, D. A.Nat. Prod. Rep199Q 7, 349. (b) Ward, R. S. (5) Konishi, T.; Konoshima, T.; Daikonya, A.; Kitanaka,&hem. Pharm.
Nat. Prod. Rep1999 16, 75 and references cited therein. Bull. 2005 53, 121.
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nucleophilic addition of an aryllithium reagent 16 followed
by stereoselective reduction of the oxocarbenium ion inter-
mediateBaformed from BR:OEtL-promoted deoxygenation
3., of the cyclic hemiketaBa. We anticipated a hydride to be
o added to8a from the inside face of the envelope conformer
OR? to stereoselectively provide the 2c8-3,44rans-4,5trans
OMe tetrahydrofurarvafor the synthesis of-{)-odoratisol C (),
(—)-futokadsurin A 2), and (-)-veraguensing). In addition,
we expected that BFOEtL-promoted epimerization of the
hemiketaPa followed by reductive deoxygenation to produce
7b would complete the synthesis of)-fragransin A (4)

and (+)-galbelgin b).

R'O
OMe

R', R2=H (-)-odoratisol C (1)
R'=H, R?=Me (-)-futokadsurin A (2)
R' R?=Me (-)-veraguensin (3)

OMe o—/

(+)-talaumidin (6)

OMe
R', R2=H (+)-fragransin A, (4)

R' R2 = Me (+)-galbelgin (5) Scheme 2. Synthesis of

3,4-Dimethyl-5-aryldihydrofuran-2¢3)-one (L0)

i -Di -3 4-di i n-Bu,BOTf
Figure 1. 2,5-Diaryl-3,4-dimethyltetrahydrofuran lignans. o o E—}‘%Nt’ C_%Clé o o OR
—78to ° :
O)LNJK/ 30 min OJ\ :
i i 1 then :
talaumldm (_3)9 (Elgu_re 1) via BE-OEtZ-promoted deoxy- 4-bensyloxy- \_5; OBn
genation/epimerization of the hemiketfh followed by 3-methoxy- OMe
stereoselective reduction of the oxocarbenium ion intermedi- 1 benzaldehyde  TBSCI
-78°C, 1h imidazole [: 12,R=H
ates8a,b. 88% DMF 13, R =TBS
i, 12 h, 91%
NaBH, oTBS NaOH, THF/MeOH/H,0

Scheme 1. Retrosynthetic Analysis

e

(3:1:0.1)
it, 24 h, 88%

a. MsCl, Et;N, CH,Cl,

reflux, 12 h

then HCI, Et,0

rt, 12 h, 70%

AN AR AT AR —78 °C, 30 min 14,R = OH
+ o
7a hvdri 8a b. NaCN, DMSO, 70 °C 15, R=CN trans
ydride 0
1-5 or or 2h, 89Aj for 2 steps ’/\
ot ot o szn, “C L
. ~78°C, 30 mi
AT 07 AR AMTNG AR "N 0 mn N0
; then Mel
7b 8b BnO _7365*10, (13 h BnO
BF3-OEt2ﬂ OMe 16 92% OMe 10
X3 '
",,, 21 “ ) ) . .
0 NJ\/J{AHCHO — At A_g As outlined in Scheme 2, the synthesis of 3,4-dimethyl-
. 1 . . .
AN O AT O OHAfz 5-aryldihydrofuran-2(Bl)-one (L0) began with the highly
11 9a

stereoselective Evans asymmesyatadol reactiort® Com-
mercially available 4-benzyloxy-3-methoxybenzaldehyde was
reacted with (%)-4-(1-methylethyl)-3-(1-oxopropyl)-2-ox-
azolidinone 11) in the presence ai-Bu,BOTf and EtN to
provide the desiredynadol adductl2 in 88% vyield as a
single diastereomer. Protection & with TBSCI (91%)

Scheme 1 describes our approach to the synthesis Offollowed bY reduction of13 with NaBH4 prov_ided the
tetrahydrofuran lignansl¢-5) via 3,4-dimethyl-5-aryldihy- corresponding alcohdi4 (88%)..Protect|on 014W|th'MsCI
drofuran-2(3)-one (L0), which could be constructed by and subsequent treatment with NaCN accomplished one-

employing the highly stereoselective Evans asymmeine carbon homo]ogation o gIVES (89% for two steps). Single-
aldol reaction of (&-4-(1-methylethyl)-3-(1-oxopropyl)-2- step conversion o5 to they-_lactone16 was achieved by
oxazolidinone 11) with 4-benzyloxy-3-methoxybenzalde- treatme_nt with NaOH n refl_uxmg THF/MeOHAR followed
hyde. The strategy underlying our synthetic plan was to apply by acidic w.orkup with HCl in BO (70%). Stereocontr_olled
o-methylation of they-lactone 16 under conventional
conditions (LHMDS, Mel) exclusively produced 3,4-di-
methyl-5-aryldihydrofuran-2(3)-one (0) in 92% yield.

10
Ar' = Ar? =
OBn OTBS
OMe

OMe

(6) Crossley, N. S.; Djerassi, @. Chem. Soc1962 1459.

(7) (@) Hattori, M.; Hada, S.; Kawata, Y.; Tezuka, Y.; Kikuchi, T.;
Namba, T.Chem. Pharm. Bull.1987 35, 3315. (b) Hanessian et al.
established the correct absolute configuratiomrioffragransin A; see ref
3a. 2004 70, 598.

(8) (a) Takaoka, D.; Watanabe, K.; Hiroi, Bull. Chem. Soc. Jpri976 (10) (a) Evans, D. A.; Bartroli, J.; Shih, T. ll. Am. Chem. S0d.981,

49, 3564. (b) Hanessian et al. confirmed the stereochemical assignment 0f103 2127. (b) For a similar Evans aldol strategy for the synthesis of a
(+)-galbelgin; see ref 3a. stereoisomer ol4, see ref 3c.

(9) Zhai, H.; Nakatsukasa, M.; Mitsumoto, Y.; FukuyamaPYanta Med.
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Next, we convertedOinto the 2,3eis-3,44rans4,5trans
tetrahydrofurarya (Scheme 3). Treatment @D with 4-tert-

Scheme 3. Reductive Deoxygenation of Cyclic Hemike@é

Ar' Q/QO Ar' ‘"g%'Arz
10 9a

ArLi, THF
—78 °C, 40 min
70%

hans

I IS

0~ “Ar?
[1 1. 3]

BF3 OEt2 Et3S|H
CH,Cl,

-78t0-20°C,9h
<20%
7a 7b

‘f‘é@ QL
Arl = Ar? =
OBn OTBS

OMe OMe

butyldimethylsilyloxy-3-methoxyphenyllithium gave a 4:1
anomeric mixture of the cyclic hemiket@h in 70% yield

Table 1. Stereoselectivity of the Reductive Deoxygenation
Reaction

conditions
OTBS

OMe
9a, R=Bn
17, R=Bz
o “ar d X:f ‘Ar'
1]
entry substrate conditions (I:rﬁt:iﬁl)

1 9a BF3:OEty, NaBH3CN, —78 °C, 30 min ~ 10:1:0
2 17 BF3OEty, Et3SiH, =78 to =20 °C,3h  25:1:0
3 9a BF3OEty, —78 to —20 °C, 2 h 1:0.1:4

then NaBH3CN, —78 °C, 30 min

the reaction proceeded to give a 10:1 diastereomeric mixture

(86% based on recovered starting material). We expectedof 9a-1 and 9a-1l (99%) without epimerization of the C2-

that treatment oPa with Et;SiH in the presence of BF
OER'" would preferentially provide the 2 8s-3,44rans4,5-
transtetrahydrofuraryathrough the addition of hydride from
the inside face of the envelope conformer (vide infra).

aryl group (entry 1). In the case of the electron-withdrawing
Bz protecting group on the C2-aryl substituent, the reductive
deoxygenation reaction df7*® (BFzOE®, EtSiH, —78 to

—20°C, 3 h) also proceeded without epimerization of the

However, the reaction conditions for reductive deoxygenation C2-aryl group to givel7-l in excellent diastereoselectivity

(BF3:OEY, ESiH, —78 to —20 °C, 9 h) gave a 1.3:1
diastereomeric mixture of 2,5-diaryl-3,4-dimethyltetrahy-
drofurans in poor yield €20%). To our surprise, careful
analysis of!H NMR spectral data revealed that the major
diastereomer had the 2{Bans-3,44rans-4,54rans-configu-

ration 7b and the minor diastereomer had the desired 2,3-

cis-3,44rans4,5trans-configuration7a, indicating that epimer-
ization of the C2-aryl group occurred under the reaction
conditionst?

The observed epimerization 8& was rationalized on the
basis that Lewis acid activation of the hemikealby BF;:
OEt combined with an inductive effect of the electron-
donating Bn group on the C2-aryl substituent effectively
competed with slow reduction of the oxocarbenium ion
intermediateBa by ESiH.12 On the basis of this rationale,
we expected that either fast reduction8afor a change of

(17-1:17-11 = 25:1, 62%) (entry 2). However, epimerization
of 9a, afforded by treatment with BFOEL (—78 to —20
°C, 2 h), followed by reduction with NaBJ€N provided a
1:0.1:4 mixture of9a-I, 9a-11, and9a-Ill (96%) (entry 3).
Treatment oPa with BF;-OEtL (—78 to—20°C, 2 h) in
the absence of a reducing agent resulted in an equilibrium
between9a and 9b (1:4 ratio) proving the observed BF
OEt-promoted epimerization &a (Scheme 4). The epimer-
ization of 9a might occur through a quinonoid oxonium ion
intermediate facilitated by an inductive effect of the electron-
donating Bn group on the C2-aryl substituéht!3Further
study is required to prove the putative mechanism. The
preference for9b in equilibrium can be explained by
unfavorable steric interaction betweeis substituents i®a.
To determine the stereochemical outcome of hydride reduc-
tion, we isolated and independently subjec@acand9b to

the electron-donating Bn group on the aryl substituent to an reductive deoxygenation conditions (BBEt, NaBH:CN,

electron-withdrawing group would prevent the epimerization
of the C2-aryl groug#

—78°C, 30 min). Under the reaction conditiorgg and9b
provided7a (7a:7c = 10:1, 99%) andrb (single diastere-

Table 1 summarizes the stereoselectivity of the reductive omer, 92%), respectivelff.The stereochemical outcome can

deoxygenation reaction 8. When9awas treated with B§-
OEt combined with NaBHCN (a strong reducing agent),

(11) Yoda, H.; Mizutani, M.; Takabe, KHeterocyclesl998 48, 679.
(12) It is known that 2,5-diaryl-3,#r-ans-dimethyltetrahydrofurans have
unique chemical shifts for H2, H3, H4, and H5%H NMR depending on

their relative stereochemistry. Thus, we determined the relative stereo-

chemistry of tetrahydrofurarizga and 7b by comparison of chemical shifts
in 'H NMR with literature values; see refs-3.

(13) For an example of Lewis acid-mediated fragmentation/isomerization
of furofurans, see: Aldous, D. J.; Dalencon, A. J.; Steel, PJ.GOrg.
Chem.2003 68, 9159.

be explained by Woerpel's recent studiéfue to unfavor-
able steric interactions of the incoming hydride with axially
oriented 3,4-dimethyl groups in conformatiénthe hydride
adds to the sterically more favorable conformati®ifrom

(15) 17 was prepared fron10 by Bn-deprotection, Bz-protection, and

ArLi-addition; see the Supporting Information for details.

(16) It is important to note that thes trans-hemiketal9a andtranstrans
hemiketaldb are both configurationally stable under the reaction condition.
(17) (&) Smith, D. M.; Tran, M. B.; Woerpel, K. Al. Am. Chem. Soc.

2003 125 14149. (b) Bear, T. J.; Shaw, J. T.; Woerpel, K. A.Org.

(14) Hanessian et al. reported a method for the stereocontrolled synthesisChem.2002 67, 2056. (c) Larsen, C. H.; Riggway, B. H.; Shaw, J. T.;
of 2,5-diaryl-3,4-dimethyltetrahydrofuran lignans by modulating the nature Woerpel, K. A.J. Am. Chem. Socd999 121, 12208. (d) Shaw, J. T;
of a directing para substituent on one of the aryl groups; see refs 3a andWoerpel, K. A.Tetrahedron1999 55, 8747. (e) Shaw, J. T.; Woerpel, K

3b.
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Scheme 4. BF;-OEt-Promoted Epimerization and Reductive
Deoxygenation

BFOEL, CH,Cly
3 —7810-20 °C, 2 h 2
)mr\ [92:9b = 14] [g\
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o e
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7 7z
ﬂll f
o;_(Z ~ ﬂ Ar'!
A JQrAH B D ArZﬁO
Gl oS
A0 AR AT 0T AR A0 AR
7a 7c 7b

the inside face of the envelope conformer (“inside attack”
model) to provide the desired 2¢3s-3,44rans4,54{rans
tetrahydrofuran/a. Also, in the case o08b, 2,3trans3,4-
trans-4,5+transtetrahydrofuran7b was formed from com-
formationD via “inside attack” of the hydride.

With both 7aand7b in hand, we proceeded to complete
the synthesis of tetrahydrofuran lignahs5 (Scheme 5).

Scheme 5. Synthesis of Tetrahydrofuran Lignatis-5

TBAF, THF /\_j
7 rt, 30 min o
a then
Mel, 3 AJVIS RO OMe
1h, 93% OMe OMe
a. Hp, Pd-C
EtOAC/EtOH (3:1)  H,, Pd—-C
i, 2h EtOAC/EtOH (3:1)E 18, R =Bn,
b. TBAF, THF 1t, 2 h, 94% 2 R=H
i, 1h NaH, Mel, DMF E ’
88% for 2 steps rt, 1h, 92% 3,R=Me
a. Hy, Pd-C
EtOAC/EtOH (3:1)
b i, 2 h
b. TBAF, THF
,1h
88% for 2 steps
OMe OMe
NaH, Mel, DMF 4 R=H
rt, 1 h, 86% 5, R=Me

Deprotection of TBS and Bn groups under conventional
conditions converteda to (—)-odoratisol C 1) (88% for
two steps). One-pot TBS-deprotection/methylation 7af
provided 18 (93%), and subsequent removal of the Bn
protecting group irl8 with Hy/Pd-C afforded | )-futokad-
surin A (2) (94%). Synthesis of+)-veraguensin 3) was
achieved by methylation &fin 92% yield. Removal of TBS

3968

and Bn protecting groups inb gave (+)-fragransin A (4)
(88% for two steps) and methylation df completed the
synthesis of {)-galbelgin £) (86%).

The epimerization of the C2-aryl group was also utilized
in the synthesis of {)-talaumidin 6) (Scheme 6). The

Scheme 6. Synthesis of )-Talaumidin ¢)

DIBALH, CH,Cl,
-78°C, 1h

then MeOH, PTSA
CH3C(OMe);
overnight, 93%

Cr3

BF3-OEt,, CH,Cl,

10
BnO

—20°C,2h,89% RO
OMe o—/
EZ5AaTEIOH @[ 20, R =Bn
(of .
i, 2 h, 93% 6,R=H

lactone10 was converted to the methyl aceted through
one-pot reduction (DIBALH) and acetalization in 93% vyield.
As we expected, FriedelCrafts-type arylation conditions
(BFs*OEt, CH,Cl,, —78 to —20 °C, 2 h¥* proceeded with
the epimerization at the C2 position &9 to provide 2,3-
trans-3,4+trans-4,5transtetrahydrofurar20 as a single di-
astereomer (89%). Final deprotection of the Bn protecting
group in20 completed the synthesis of-}-talaumidin ©)
(93%).

In summary, we applied BFOEt%-promoted deoxygen-
ation/epimerization of the cyclic hemiket@h and stereo-
selective reduction of the oxocarbenium ion intermediates
8ab to the synthesis of 2,5-diaryl-3,4-dimethyltetrahydro-
furan lignans. Combination of BFOE%L with a strong
reducing agent (e.g., NaBBN) enabled the synthesis of
(—)-odoratisol C 1), (—)-futokadsurin A ), and ()-
veraguensin3) without epimerization of the C2-aryl group,
whereas BEOEb-promoted epimerization dda or methyl
acetal19 under the conditions of slow reduction (e.g.s-Et
SiH) combined with an electron-donating protecting group
(e.g., Bn) was explored for the synthesis af){fragransin
Az (4), (+)-galbelgin 6), and ()-talaumidin 6). This
versatile synthetic strategy should be broadly applicable to
the efficient synthesis of a diverse set of bioactive 2,5-diaryl-
3,4-dimethyltetrahydrofuran lignans.
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