

Catalytic Annulation of Diethyl Methylenecyclopropane-1,1dicarboxylate with 1,1-Dicyanoalkenes

Itaru Suzuki, Shinji Tsunoi, and Ikuya Shibata*0

Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan

(5) Supporting Information

ABSTRACT: The catalytic annulation of methylenecyclopropane 1 with 1,1-dicyanoalkenes 2 using a Mg–Sn catalytic system was developed. Selective formation of cyclopentylide-nemalonates 3 and spiro[2,3]hexane-1,1-dicarboxylates 4 was accomplished via the choice of a proper solvent and an effective catalytic system.

M ethylenecyclopropanes (MCPs) can undergo a variety of reactions facilitated by the release of the intramolecular strain of the small ring and its exocyclic C=C bond.¹ The main-group metal and Lewis acid (LA) catalysts activate MCPs, leading to cleavage of the distal bond.² Thus, MCPs react not only at the α -position but also at the γ -position to give a variety of cyclic products.^{2d} We have established the [3 + 2]-annulation of simple cyclopropanes with isocyanates (Scheme 1, eq 1).³ We previously reported the formation of an ate

Scheme 1. Catalytic Annulation of Cyclopropanes with Isocyanates

complex, MgBr⁺[Bu₂SnBrI₂]⁻, that serves as the active catalyst in the Bu₂SnI₂–MgBr₂ catalytic system. A characteristic of the tin ate complex is its hybrid makeup, wherein both an acidic magnesium cation and a nucleophilic Sn–I bond are parts of the same molecule.⁴ Although a similar catalytic principle has been reported for MgI₂,⁵ the hybrid characteristic of the tin catalyst confers a higher level of activity. The accessibility of a variety of cyclopropanes is another positive factor for the tin catalyst. We have already applied the tin catalytic system to the reaction of methylenecyclopropane **1a** with an isocyanate, and 4-methylene- γ -butyrolactam was obtained as a product (Scheme 1, eq 2).³ The ring opening of **1a** afforded tin dienolate **A**, which then reacted with the isocyanate. Intramolecular alkylation of the resultant adduct finally produced a methylene γ -lactam, thus indicating that the initial addition of the isocyanate occurred at the α -position of dienolate **A**. On the basis of these results, herein we present the catalytic reaction of MCP **1a** with dicyanoalkenes **2**, in which magnesium and tin systems combine as effective catalysts. In particular, regioselectivity control of cyclopentylidenemalonates **3** and spiro-[2,3]hexane-1,1-dicarboxylates **4** was accomplished via the proper choice of catalyst and solvent (Scheme 2).

Scheme 2. Catalytic Annulation of Methylenecyclopropanes with 1,1-Dicyanoalkenes

Initially, we performed the catalytic annulation of methylenecyclopropane-1,1-dicarboxylate ester 1a with 1,1-dicyanoalkene 2a at 40 °C using THF as solvent (Table 1). In the absence of catalyst, the reaction did not proceed (Table 1, entry 1). There was no reaction when 0.1 equiv of Bu_2SnI_2 was used as the catalyst (Table 1, entry 2). On the other hand, the use of MgBr₂ was shown to promote the reaction of methylenecycloprane 1a and dicyanoalkene 2 (Table 1, entry 3), affording a mixture of cyclopentylidenemalonate 3a and adduct 4a in 81% overall yield. MgI₂ as the catalyst afforded 3a predominantly (Table 1, entry 4). Using a system that combined Bu_2SnI_2 with MgI₂ gave 3a with the highest level of selectivity (80:2; Table 1, entry 5). In the initial stage, the byproduct 4a seemed to be a [2

Received: April 5, 2017

Table 1. Reaction of 1a with Alkenes 2 To Give Cyclopentylidenemalonates 3^a

	+ CN -	cat. (0.1 equiv) THF 40 °C, 24 h		
1a	2	3		4
entry	2 , R	cat.	3, yield (%) ^b	4, yield (%)
1	2a , Ph	_	3a, tr	4a , tr
2		Bu_2SnI_2	3a, tr	4a , tr
3		MgBr ₂	3a , 47	4a , 34
4		MgI_2	3a , 83	4a , 12
5		$Bu_2SnI_2-MgI_2$	3a , 80	4a , 2
6	2b , <i>p</i> -ClC ₆ H ₄	MgI ₂	3b , 93	4b , tr
7		$Bu_2SnI_2-MgI_2$	3a , 78	4b , 4
8	2c , <i>p</i> -BrC ₆ H ₄	MgI_2	3c , 68	4c , tr
9		$Bu_2SnI_2-MgI_2$	3c , 73	4c , tr
10	2d , <i>p</i> -FC ₆ H ₄	MgI ₂	3d , 61	4d , 3
11		$Bu_2SnI_2-MgI_2$	3d , 76	4d , 4
12	2e , p -NO ₂ C ₆ H ₄	MgI ₂	3e , 72	4e , tr
13		$Bu_2SnI_2-MgI_2$	3e , 90	4e , tr
14	2f , <i>p</i> -MeOC ₆ H ₄	MgI ₂	3f , 55	4f, 20
15		$Bu_2SnI_2-MgI_2$	3f , 57	4f , 20
16	2g , <i>p</i> -MeC ₆ H ₄	MgI ₂	3g , 61	4g , tr
17		$Bu_2SnI_2-MgI_2$	3g , 74	4g , 17
18	2h , Np	MgI_2	3h , 82	4h, 7
19		$Bu_2SnI_2-MgI_2$	3h , 67	4h , 8
ac 1	:		1)	

^aConditions: **1a** (0.75 mmol), **2a** (0.5 mmol), cat. (0.05 mmol), THF (1 mL), 25 °C, 24 h. ^btr = trace.

+ 3]-adduct derived from the addition of the α -carbon of tin dienolate **A**, similar to that of isocyanate (Scheme 1, eq 2).³ However, there are no vinyl protons in the ¹H NMR spectrum, and two sets of methylene protons and a set of methine protons were observed. The byproduct **4a** proved to be a spirocarbocycle structure. The products, cyclopentylidenemalonate **3a** and spiro[2,3]hexane-1,1-dicarboxylate **4a**, were formally classified as a distal-bond-cleaved [3 + 2]-annulation product and a ringuntouched [2 + 2]-cycloaddition product, respectively.

For the synthesis of cyclopentylidenemalonate 3, a plausible reaction path is shown in Scheme 3. Initially, the metal iodide

catalyst attacks **1a** at C3 to give metal dienolate **A**.⁶ In a subsequent step, the dienolate adds to the alkene at the γ -carbon, giving metal keteneimine **B**. In the last stage, the intramolecular alkylation to alkyl iodide affords cyclopentylidenemalonate **3** and regenerates the catalyst. Thus, the reaction involves the catalytic employment of metal dienolate **A**.^{7–9}

Table 1 also shows the results of the reaction of 1a with various 1,1-dicyanoalkenes 2 under the optimized conditions (Table 1, entries 6–19). By the reactions with various 1,1-dicyanoalkenes 2 bearing functionalized aromatic substituents, the corresponding cyclopentylidenemalonates 3 were obtained with high selectivity. The levels of catalytic activity for both MgI₂ and Bu₂SnI₂-MgI₂ were comparable in all cases (Table 1,

entries 6, 8, 10, 12, 14, 16, and 18 vs 7, 9, 11, 13, 15, 17, and 19).

We had already established that the characteristic feature of the tin halide ate complex $MgX^+[Bu_2SnBrX_2]^-$ is its hybrid makeup. MgX^+ acts as a Lewis acid to activate the dicarboxylate moiety to accelerate the ring opening of simple cyclopropanes (Scheme 4).³ Simultaneously, a prolonged Sn–I bond that

occupies the axial position in the trigonal-bipyramidal tin structure¹⁰ attacks the cyclopropane in an effective manner. When the tin complex was reacted with an equimolar amount of simple cyclopropane **1b** at rt for 24 h, a ring-opened adduct, iodoethyl malonate, was formed in 45% yield, whereas the use of only Bu₂SnI₂ or MgI₂ afforded lower yields (<10%) (Scheme 4, eq 1). In contrast, when an equimolar catalyst was reacted with methylenecycloproprane **1a** at 0 °C for 15 min, even the sole use of MgBr₂ was sufficient to initiate ring opening (Scheme 4, eq 2). As a result of its highly strained structure, methylenecycloproprane **1a** displayed a higher reactivity in the catalytic annulation when only a magnesium salt was used (Table 1, entries 3, 4, 6, 8, 10, 12, 14, 16, and 18).

There is a possibility of rearrangement from spirocarbocycle 4 to the stable adduct 3. Thus, heating of 4a in the presence of the catalyst afforded 3a, albeit in a low yield (19%). The reaction proceeded via ring opening of the cyclopropane moiety, as shown in Scheme 5. However, when spirocarbocycle

4a was treated under the conditions shown in Table 1 (40 °C), no rearrangement occurred. Hence, cyclopentylidenemalonate 3a was formed directly rather than by rearrangement of 4a.

When dichloromethane instead of THF was used as the solvent, a dramatic change in the product (3a/4a = 11%/72%) was observed in the reaction of 1a with 2a catalyzed by Bu₂SnI₂-MgI₂ (Table 2, entry 1). Thus, the major product was 4a.

Scheme 6 summarizes the mechanism for the syntheses of the two different types of products, 3a and 4a. Both products are derived from the same intermediate, keteneimine B,

Table 2. Reaction of 1a with Alkene 2a To Give Spirocarbocycle $4a^{a}$

EtOOC EtOOC 1a	$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} \text{cat.} \\ \text{(0.1 equiv)} \end{array} \\ \\ & \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ & \begin{array}{c} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ & \begin{array}{c} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ & \begin{array}{c} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ & \begin{array}{c} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ & \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	EtOOC EtOOC 3a	toooc NC CN 4a
entry	cat.	3a , yield (%) ^b	4a , yield (%)
1	$Bu_2SnI_2-MgI_2$	11	72
2	MgI ₂	28	58
3	MgBr ₂	6	76
4	MgCl ₂	tr	68
5	$Bu_2SnBr_2-MgBr_2$	tr	80
6	Bu2SnCl2-MgCl2	tr	99

^{*a*}Conditions: **1a** (0.75 mmol), **2a** (0.5 mmol), cat. (0.05 mmol), CH₂Cl₂ (1 mL), 25 °C, 24 h. ^{*b*}tr = trace.

Table 3. Reaction of 1a with Alkenes 2 To Give Spirocarbocycles 4^{a}

Scheme 6. Catalytic Cycle for the Formation of 3 and 4

generated by the addition of the γ -carbon of dienolate **A**. The product is determined in the cyclization step. As solvents, the difference between dichloromethane and THF can be explained by their coordinating ability. THF, a coordinating solvent, aligns with Mg²⁺ and prevents the activation of the Michael acceptor moiety in **B**, and the intramolecular alkylation then proceeds to give **3** (route a). With dichloromethane, the effective activation of the Michael acceptor in **B** induces an intramolecular conjugate addition (route b). The resultant intermediate **C** causes a subsequent alkylation and gives spirocarbocycles **4**, which thereby regenerates the catalyst.

For the selective synthesis of spirocarbocycle 4a, it is important to suppress the intramolecular alkylation (route a) in intermediate B. Accordingly, the halogen moiety in B was changed from an alkyl iodide either to alkyl bromide or chloride, both of which are less reactive than iodide. With the sole use of MgX_2 , the reaction seemed to proceed by the same protocol as that with the tin ate complex. In fact, compared with MgI₂, using MgBr₂ and MgCl₂ catalysts afforded spirocarbocycle 4a predominantly (Table 2, entries 2-4). It is noteworthy that the five-coordinate tin gave results that were superior to the sole use of MgX₂. Thus, when either the Bu₂SnBr₂-MgBr₂ or the Bu₂SnCl₂-MgCl₂ system was used as a catalyst, spirocarbocycle 4a was obtained selectively, as expected (Table 2, entries 5 and 6). Among the catalytic systems examined, Bu₂SnCl₂-MgCl₂ was the best choice to afford the selective formation of 4a. Thus, the five-coordinate tin was the preferred conjugate addition prior to alkylation.¹¹

Synthetic and natural spirocarbocycles have attracted the attention of organic chemists because of their unique multidimensional structural features and numerous possible reactions whereby they undergo a carbon–carbon bond cleavage.¹² Among them, spiro[2,3]hexanes are rare structures. To date, there are few examples of the synthesis of spiro[2,3]hexanes wherein transition metal catalysts are necessary.^{13,14} Table 3 summarizes the results of the reaction

	EtOOC + R EtOOC + C	$\sum_{N=1}^{CN} \xrightarrow{\begin{array}{c} cat. \\ (0.1 \text{ equiv}) \\ 25 \text{ °C, 24 h} \end{array}} \xrightarrow{EtOOC} \xrightarrow{EtOOC} CN$	+ EtOOC R NC CN	
	1a :	2 3	4	
entry	2 , R	cat.	3, yield (%) ^b	4, yield (%)
1	2a , Ph	Bu ₂ SnCl ₂ -MgCl ₂	3a , tr	4a, 99
2		MgCl ₂	3a , tr	4a , 68
3	2b , p -ClC ₆ H ₄	Bu ₂ SnCl ₂ -MgCl ₂	3b , tr	4b , 95
4		MgCl ₂	3b , tr	4b , tr
5	2c , p -BrC ₆ H ₄	Bu ₂ SnCl ₂ -MgCl ₂	3c , tr	4c , 98
6		MgCl ₂	3c , tr	4c , 30
7	2d , p -FC ₆ H ₄	Bu ₂ SnCl ₂ -MgCl ₂	3d , tr	4d , 96
8		MgCl ₂	3d , tr	4d , tr
9	2e , p -NO ₂ C ₆ H ₄	Bu ₂ SnCl ₂ -MgCl ₂	3e , tr	4e , 99
10		$MgCl_2$	3e , tr	4e , 40
11	2f , <i>p</i> -MeOC ₆ H ₄	$Bu_2SnBr_2-MgBr_2$	3 f , tr	4f , 55^{c}
12		MgBr ₂	3f , 31	4f , 33 ^c
13	2g , <i>p</i> -MeC ₆ H ₄	Bu ₂ SnCl ₂ -MgCl ₂	3g, tr	4g , 96
14		MgCl ₂	3g, tr	4 g, 8
15	2h , Np	Bu ₂ SnCl ₂ -MgCl ₂	3h , tr	4h , 97
16		MoCl	3h. tr	4h . 46

^aConditions: 1a 0.75 mmol, 2 0.5 mmol, cat. 0.05 mmol, CH_2Cl_2 1 mL, 25 °C, 24 h. ^btr = trace. ^cThe bromide catalyst gave a superior yield compared with the chloride catalyst.

using various aromatic 1,1-dicyanoalkenes **2**. For the formation of **4**, $Bu_2SnX_2-MgX_2$ was a superior catalyst to MgX_2 alone in all cases (compare entries 1, 3, 5, 7, 9, 11, 13, and 15 vs entries 2, 4, 6, 8, 10, 12, 14, and 16). For the selective formation of **4**, three factors were important: the use of the noncoordinative solvent CH_2Cl_2 , a metal chloride catalyst, and five-coordinate tin. Spiro[2,3]hexane-1,1-dicarboxylates **4** could be isolated in diastereomerically pure form, as shown by the ¹H and ¹³C NMR spectra. For spirocarbocycle **4d** with a *p*-bromophenyl substituent, X-ray crystal analysis was successful.¹⁵ The aryl and the carbon substituted for by dicarboxylates occupied the less-hindered *cis* positions in the wing-shaped cyclobutane ring.

In conclusion, we have developed a catalytic conversion of methylenecyclopropanes. The Mg–Sn catalytic system is an effective catalyst. Regioselectivity control is accomplished via the choice of a proper solvent and catalytic system. In particular, the synthesis of the rare spiro[2,3]hexane structure 4 is noted.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.7b01023.

Experimental procedures and spectral data (PDF) X-ray data for compound **4c** (CIF)

AUTHOR INFORMATION

Corresponding Author

*shibata@epc.osaka-u.ac.jp

ORCID 💿

Ikuya Shibata: 0000-0002-9619-4019

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for financial support from The Naito Foundation. We also thank Mr. Sho Yamashita and the Instrumental Analysis Center, Faculty of Engineering, Osaka University, for assistance with collecting the spectral data.

REFERENCES

(1) (a) Yu, L.; Liu, M.; Chen, F.; Xu, Q. Org. Biomol. Chem. 2015, 13, 8379–8392. (b) Masarwa, A.; Marek, I. Chem. - Eur. J. 2010, 16, 9712–9721. (c) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117–3179. (d) Shi, M.; Lu, J.-M.; Wei, Y.; Shao, L.-X. Acc. Chem. Res. 2012, 45, 641–652. (e) Nakamura, I.; Oh, B. H.; Saito, S.; Yamamoto, Y. Angew. Chem., Int. Ed. 2001, 40, 1298–1300. (f) Trillo, B.; Gulias, M.; Lopez, F.; Castedo, L.; Mascarenas, J. L. Adv. Synth. Catal. 2006, 348, 2381–2384.

(2) (a) Fujino, D.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2011, 133, 9682–9685. (b) Scott, M. E.; Lautens, M. J. Org. Chem. 2008, 73, 8154–8162. (c) Scott, M. E.; Han, W.; Lautens, M. Org. Lett. 2004, 6, 3309–3312. (d) Taillier, C.; Bethuel, Y.; Lautens, M. Tetrahedron 2007, 63, 8469–8477.

(3) Tsunoi, S.; Maruoka, Y.; Suzuki, I.; Shibata, I. Org. Lett. 2015, 17, 4010–4013.

(4) (a) Shibata, I.; Suwa, T.; Sakakibara, H.; Baba, A. Org. Lett. 2002, 4, 301–303. (b) Shibata, I.; Suwa, T.; Ryu, K.; Baba, A. J. Org. Chem. 2001, 66, 8690–8692. (c) Shibata, I.; Suwa, T.; Ryu, K.; Baba, A. J. Am. Chem. Soc. 2001, 123, 4101–4102.

(5) (a) Parsons, A. T.; Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 3122–3123. (b) Parsons, A. T.; Smith, A. G.; Neel, A. J.; Johnson, J. S. J. Am. Chem. Soc. 2010, 132, 9688–9692. (c) Carson, C. A.; Kerr, M. A. J. Org. Chem. 2005, 70, 8242–8244. (d) Bertozzi, F.; Gustafsson, M.; Olsson, R. Org. Lett. 2002, 4, 3147–3150. (e) Ganton, M. D.; Kerr, M. A. J. Org. Chem. 2004, 69, 8554–8557.

(6) The synthetic utility of tin enolates has progressed because of their efficient chemo- and stereoselectivities. For reviews of organotin enolates, see: (a) Shibata, I.; Baba, A. Org. Prep. Proced. Int. **1994**, 26, 85–100. (b) Baba, A.; Shibata, I.; Yasuda, M. In Comprehensive Organometallic Chemistry III; Knochel, P., Ed.; Elsevier: Oxford, U.K., 2007; Vol. 9, Chapter 8, pp 341–380. (c) Pereyre, M.; Quintard, P. J.; Rahm, A. In Tin in Organic Synthesis; Butterworth: London, 1987; pp 261–285. (d) Davies, A. G. In Organotin Chemistry; VCH: Weinheim, Germany, 1997; pp 166–193. (e) Jousseaume, B. Sci. Synth. **2003**, 5, 369–382.

(7) The general procedures using tin enolates are mainly based on stoichiometric reactions. The development of a system employing catalytic tin enolates is in high demand. For catalytic use of organotin enolates, see: Pd-combined system: (a) Tsuji, J.; Minami, I.; Shimizu, I. Tetrahedron Lett. 1983, 24, 4713-4714. (b) Tsuji, J.; Minami, I.; Shimizu, I. Tetrahedron Lett. 1983, 24, 5639-5640. Tin-only system: (c) Yanagisawa, A.; Kushihara, N.; Sugita, T.; Horiguchi, M.; Ida, K.; Yoshida, K. Synlett 2015, 26, 2541-2546. (d) Yanagisawa, A.; Fujinami, T.; Oyokawa, Y.; Sugita, T.; Yoshida, K. Org. Lett. 2012, 14, 2434–2437. (e) Yanagisawa, A.; Izumiseki, A.; Sugita, T.; Kushihara, N.; Yoshida, K. Synlett 2012, 23, 107-112. (f) Yanagisawa, A.; Izumi, Y.; Takeshita, S. Synlett 2009, 2009, 716-719. (g) Yanagisawa, A.; Saito, H.; Harada, M.; Arai, T. Adv. Synth. Catal. 2005, 347, 1517-1522. (h) Yanagisawa, A.; Sekiguchi, T. Tetrahedron Lett. 2003, 44, 7163-7166. (i) Yanagisawa, A.; Kushihara, N.; Sugita, T.; Yoshida, K. Synlett 2012, 23, 1783-1788. (j) Yanagisawa, A.; Kushihara, N.; Yoshida, K. Org. Lett. 2011, 13, 1576-1578. (k) Yanagisawa, A.; Satou, T.; Izumiseki, A.; Tanaka, Y.; Miyagi, M.; Arai, T.; Yoshida, K. Chem. - Eur. J. 2009, 15, 11450-11453. Catalytic use of organotin enamine: (1) Takahashi, H.; Yasui, S.; Tsunoi, S.; Shibata, I. Org. Lett. 2014, 16, 1192-1195.

(8) (a) Shibata, I.; Suwa, T.; Ryu, K.; Baba, A. J. Org. Chem. 2001, 66, 8690–8692. (b) Shibata, I.; Tsunoi, S.; Sakabe, K.; Miyamoto, S.; Kato, H.; Nakajima, H.; Yasuda, M.; Baba, A. Chem. - Eur. J. 2010, 16, 13335–13338.

(9) Tsunoi, S.; Seo, Y.; Takano, Y.; Suzuki, I.; Shibata, I. Org. Biomol. Chem. 2016, 14, 1707–1714.

(10) For five-coordinate tin, see: (a) Davis, A. G. Organotin Chemistry; VCH: New York, 1997; pp 18–24. (b) Harrison, P. G. Chemistry of Tin; Blackie: London, 1989; pp 71–89. (c) Holecek, J.; Nadvornik, M.; Handlir, K.; Lycka, A. J. Organomet. Chem. **1983**, 241, 177–184. (d) Nadvornik, M.; Holecek, J.; Handlir, K.; Lycka, A. J. Organomet. Chem. **1984**, 275, 43–51.

(11) Yasuda and Baba reported that five-coordinate tin increases the HOMO level of the tin enolate and promotes conjugate addition effectively. See: Yasuda, M.; Chiba, K.; Ohigashi, N.; Katoh, Y.; Baba, A. J. Am. Chem. Soc. **2003**, 125, 7291–7300.

(12) (a) D'yakonov, V. A.; Trapeznikova, O. A.; de Meijere, A.; Dzhemilev, U. M. Chem. Rev. 2014, 114, 5775–5814. (b) Carreira, E. M.; Fessard, T. C. Chem. Rev. 2014, 114, 8257–8322.

(13) Noyori, R.; Ishigami, T.; Hayashi, N.; Takaya, H. J. Am. Chem. Soc. 1973, 95, 1674–1676.

(14) Binger, P.; Brinkmann, A.; Wedemann, P. Chem. Ber. 1983, 116, 2920–2930.

(15) The crystal structure of compound 4c (CCDC 1519833) is given in the Supporting Information.