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Abstract: A convergent approach towards nonsymmetrical 2,5-di-
ester pyrroles is described. The building blocks can be easily assem-
bled in less than four steps allowing for facile construction of
diversity. The synthesis uses a rhodium-catalyzed NH insertion, fol-
lowed by a one-pot deprotection–condensation to yield the desired
pyrroles.
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Given their importance in natural and pharmaceutical
products,1 extensive efforts have been targeted to the
preparation of pyrroles.2 However, very few methods al-
low access to pyrroles bearing two electron-withdrawing
groups at the 2- and 5-positions. In most cases, these ap-
proaches lead to symmetrical pyrroles.3 Therefore, the de-
sign of a synthesis to access unsymmetrical pyrroles
bearing electron-withdrawing groups at the 2- and 5-posi-
tions would be of great value.

We envisioned access to 2,5-diester pyrroles bearing a
substituent at the 3-position (1) via a one-pot deprotec-
tion–cyclization of keto enamine 2. We expected that the
deprotection of the enamine would facilitate its cycliza-
tion by increasing the electron density on the system.4 To
maximize convergence, 2 would be obtained via a rhodi-
um-catalyzed N–H insertion between readily prepared
enamine 3 and diazo 4 (Scheme 1).5 Enamine 3 can con-
veniently be prepared from serine.

Scheme 1 Retrosynthetic approach towards pyrroles bearing 2,5-
esters

Early on, we realized that the choice of protecting group
(PG) on 2 was crucial, since its removal under mild con-
ditions was required during the cyclization. The very acid-
ic conditions required for Boc deprotection led to
decomposition and the acetate protecting group proved
difficult to remove. The sensitive nature of the enamine 2
led us to consider the use of the Troc group which could
be deprotected under buffered conditions. Another key
consideration was the nature of R4. Our original intent was
to have R4 = H which would provide the trisubstituted
pyrrole 1. The general synthesis of the enamine fragments
3 is outlined in Scheme 2.

Scheme 2 Preparation of the Troc-protected enamines substrates.
Reagents and conditions: a) TrocCl, Et3N, CH2Cl2, 0 °C, 16 h, 93%;
b) MsCl, Et3N, CH2Cl2, –30 °C, 16 h, 72%; c) NBS, 16 h, then Et3N,
2 h, CH2Cl2, 20 °C, 68%; d) PhSH, K2CO3, MeCN, 20 °C, 1 h, 57%.

Conveniently, DL-serine methyl ester is initially protected
with a Troc protecting group, followed by a one-pot me-
sylation–elimination sequence to yield enamine 6. From
this key enamine, we could prepare bromo-substituted
enamines 7 and thiophenyl ether 8 to evaluate the effect of
substitution pattern on the pyrrole formation chemistry.6

Literature precedents led us to believe that both these sub-
stituents could be removed to access our desired trisubsti-
tuted pyrrole 1.7 The desired cyclization precursors 2
having R4 = H, Br, and SPh were prepared via rhodium-
catalyzed N–H insertion. However, initial attempts at af-
fecting cyclization upon Troc deprotection conditions re-
sulted in decomposition except when using the enamine
2a (R4 = SPh). Treating 2a with excess zinc in THF and 1
N HCl at 60 °C, led to a promising 26% yield of 1a. Sur-
prisingly, the thiophenol was removed during cyclization.
At this moment, we have no direct mechanistic evidence
to explain the lost of this moiety, however, literature pre-
cedents suggest that it may play a role in the dehydration
required to afford the pyrrole.8

We then focused our efforts on the optimization of our
protocol. The best conditions for the rhodium-catalyzed
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N–H insertion use 5 mol% of Rh2(oct)4 in dichlo-
romethane at 20 °C in the presence of 1.5 equivalents of
diazo 4. Table 1 outlines the substrate scope of this trans-
formation.

Both electron-rich and electron-poor aryl substituents (en-
tries 1–6), as well as alkyl substituents (entries 7–9) were
all well tolerated. Highly stabilized diazo 4h proved less
reactive (entry 8). Extensive development was required to
optimize the deprotection–cyclization step.9 Ultimately,
we found that the use of 10 equivalents of zinc, in 2-pro-
panol–water (8:1 ratio), at 60 °C for 24 hours was optimal.
Under these conditions, pyrrole 1a10 was obtained in 60%
yield. Submitting other keto-enamines bearing aryl sub-
stituents showed that the electron density on the aryl did
not have a significant impact upon cyclization efficiency
(Table 1, entries 2–6). Even the strongly withdrawing 4-
nitro-substituted keto enamine afforded the pyrrole 1d,

where the nitrogroup is reduced, in respectable yield
(Table 1, entry 4). Lower yields were obtained for alkyl-
substitued keto enamines (Table 1, entries 7 and 8). How-
ever, good yield was achieved for the bulkier isopropyl
derived substrate (Table 1, entry 9).

Evaluation of the scope at the 2-position is subject of cur-
rent evaluation and will be reported in due course. How-
ever, we have demonstrated that tert-butyl ester at the 2-
position can be prepared (in place of the ethyl ester), thus
facilitating the differentiation of the two esters on the pyr-
role (Equation 1).

In conclusion, we have designed and developed a conver-
gent approach to access nonsymmetrical 2,5-diester pyr-
roles. The key steps of the synthesis involved a rhodium-
catalyzed N–H insertion and a one-pot, zinc-mediated
deprotection–cyclization.

Table 1 Scope for the Rhodium-Catalyzed NH Insertion and Zinc-Mediated Deprotection–Cyclization Sequence

Entry Diazo 4 Isolated yield insertion (%) Isolated yield cyclization (%)

1 4a 2a 74 1a 60

2 4b 2b 61a 1b 58

3 4c 2c 69 1c 54

4 4d 2d 88 1d 47b

5 4e 2e 74 1e 54

6 4f 2f 79 1f 59

7 4g
Me

2g 92 1g 24

8 4h
CF3 2h 58a 1h 33

9 4i
i-Pr

2i 85a 1i 52

a Conditions: 3 equiv of diazo were used.
b The pyrrole-aniline was obtained (reduction of the nitro).
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Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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NaHCO3 solution, back extracted with CH2Cl2. Combined 
organic layers were washed with brine, dried over MgSO4, 
and concentrated under vacuum. Purification by flash 
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hexanes–EtOAc yielded 2 as a pure product.
Methyl 2-{(1-Ethoxy-1,3-dioxo-3-phenylpropan-2-
yl)[(2,2,2-trichloroethoxy)carbonyl]amino}-3-
(phenylthio)acrylate (2a)
1H NMR (400 MHz, acetone-d6): d = 8.12 (br, 1 H), 7.58–
7.51 (m, 2 H), 7.53–7.45 (m, 3 H), 7.45–7.39 (m, 2 H), 7.38–
7.30 (m, 2 H), 7.30–7.24 (m, 2 H), 4.83 (s, 2 H), 3.78 (q, 
J = 7.1 Hz, 2 H), 3.60 (s, 3 H), 0.79 (t, J = 7.1 Hz, 3 H) ppm. 
13C NMR (101 MHz, acetone-d6): d = 165.9, 165.0, 159.8, 
153.3, 149.7, 134.7, 133.7, 131.6, 131.1, 130.0, 129.7, 
129.6, 128.1, 114.9, 112.3, 96.7, 75.2, 61.9, 52.1, 13.8 ppm. 
IR (neat): 3311 (br), 2982, 1715, 1439, 1268, 1179, 1128, 
1034, 732. ESI-HRMS: m/z calcd for C24H22Cl3NNaO7S 
[M + Na]: 598.0049; found: 598.0044.
General Procedure for the Synthesis of Compounds 1a–i
To a stirred solution 2 (0.35 mmol) in 2-PrOH (3.5 mL) and 
H2O (0.627 mL, 35 mmol) was added zinc (228 mg, 3.5 
mmol). Mixture was heated to 60 °C and stirred for 24 h. The 
suspension was filtered on Celite, then concentrated under 
vacuum. Purification by flash chromatography (silica gel, 
230–400 mesh; Merck) using hexanes–EtOAc yielded 1 as a 
pure product.
2-Ethyl 5-Methyl 3-Phenyl-1H-pyrrole-2,5-
dicarboxylate (1a)
1H NMR (400 MHz, acetone-d6): d = 11.43 (br, 1 H), 7.69–
7.65 (m, 2 H), 7.42–7.39 (m, 3 H), 7.30 (s, 1 H), 4.16 (q, 
J = 7.1 Hz, 2 H), 3.81 (s, 3 H), 1.22 (t, J = 7.1 Hz, 3 H) ppm. 
13C NMR (101 MHz, acetone-d6): d = 164.2, 161.3, 141.7, 
131.9, 130.6, 129.5, 128.5, 123.3, 118.8, 114.7, 60.2, 51.8, 
14.5 ppm. IR (neat): 3706 (br), 3306, 2973, 1692, 1467, 
1249, 1143, 1035, 757, 687. ESI-HRMS: m/z calcd for 
C15H16NO4 [M + H]: 274.1074; found: 274.1077.

Equation 1 Preparation of the pyrrole bearing a tert-butyl ester at
2-position
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